Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncllem Structured version   Visualization version   GIF version

Theorem caragenuncllem 46503
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncllem.o (𝜑𝑂 ∈ OutMeas)
caragenuncllem.s 𝑆 = (CaraGen‘𝑂)
caragenuncllem.e (𝜑𝐸𝑆)
caragenuncllem.f (𝜑𝐹𝑆)
caragenuncllem.x 𝑋 = dom 𝑂
caragenuncllem.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragenuncllem (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))

Proof of Theorem caragenuncllem
StepHypRef Expression
1 caragenuncllem.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
2 caragenuncllem.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
3 caragenuncllem.x . . . . . 6 𝑋 = dom 𝑂
4 caragenuncllem.e . . . . . 6 (𝜑𝐸𝑆)
5 caragenuncllem.a . . . . . . 7 (𝜑𝐴𝑋)
65ssinss1d 4206 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐸𝐹)) ⊆ 𝑋)
71, 2, 3, 4, 6caragensplit 46491 . . . . 5 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = (𝑂‘(𝐴 ∩ (𝐸𝐹))))
87eqcomd 2735 . . . 4 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))))
9 inass 4187 . . . . . . . 8 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸))
10 incom 4168 . . . . . . . . . 10 ((𝐸𝐹) ∩ 𝐸) = (𝐸 ∩ (𝐸𝐹))
11 inabs 4225 . . . . . . . . . 10 (𝐸 ∩ (𝐸𝐹)) = 𝐸
1210, 11eqtri 2752 . . . . . . . . 9 ((𝐸𝐹) ∩ 𝐸) = 𝐸
1312ineq2i 4176 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸)) = (𝐴𝐸)
149, 13eqtri 2752 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴𝐸)
1514fveq2i 6843 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) = (𝑂‘(𝐴𝐸))
16 incom 4168 . . . . . . . . . 10 ((𝐴𝐸) ∩ 𝐹) = (𝐹 ∩ (𝐴𝐸))
17 indifcom 4242 . . . . . . . . . 10 (𝐹 ∩ (𝐴𝐸)) = (𝐴 ∩ (𝐹𝐸))
1816, 17eqtr2i 2753 . . . . . . . . 9 (𝐴 ∩ (𝐹𝐸)) = ((𝐴𝐸) ∩ 𝐹)
1918eqcomi 2738 . . . . . . . 8 ((𝐴𝐸) ∩ 𝐹) = (𝐴 ∩ (𝐹𝐸))
20 difundir 4250 . . . . . . . . . 10 ((𝐸𝐹) ∖ 𝐸) = ((𝐸𝐸) ∪ (𝐹𝐸))
21 difid 4335 . . . . . . . . . . 11 (𝐸𝐸) = ∅
2221uneq1i 4123 . . . . . . . . . 10 ((𝐸𝐸) ∪ (𝐹𝐸)) = (∅ ∪ (𝐹𝐸))
23 0un 4355 . . . . . . . . . 10 (∅ ∪ (𝐹𝐸)) = (𝐹𝐸)
2420, 22, 233eqtrri 2757 . . . . . . . . 9 (𝐹𝐸) = ((𝐸𝐹) ∖ 𝐸)
2524ineq2i 4176 . . . . . . . 8 (𝐴 ∩ (𝐹𝐸)) = (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸))
26 indif2 4240 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸)) = ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)
2719, 25, 263eqtrri 2757 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸) = ((𝐴𝐸) ∩ 𝐹)
2827fveq2i 6843 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)) = (𝑂‘((𝐴𝐸) ∩ 𝐹))
2915, 28oveq12i 7381 . . . . 5 ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹)))
3029a1i 11 . . . 4 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
31 eqidd 2730 . . . 4 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
328, 30, 313eqtrd 2768 . . 3 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
33 difun1 4258 . . . . 5 (𝐴 ∖ (𝐸𝐹)) = ((𝐴𝐸) ∖ 𝐹)
3433fveq2i 6843 . . . 4 (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹))
3534a1i 11 . . 3 (𝜑 → (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹)))
3632, 35oveq12d 7387 . 2 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))))
375ssinss1d 4206 . . . . 5 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
381, 3, 37omexrcl 46498 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ ℝ*)
391, 3, 37omecl 46494 . . . . 5 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ (0[,]+∞))
4039xrge0nemnfd 45321 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ≠ -∞)
4138, 40jca 511 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞))
42 caragenuncllem.f . . . . . . 7 (𝜑𝐹𝑆)
431, 2, 42, 3caragenelss 46492 . . . . . 6 (𝜑𝐹𝑋)
4443ssinss2d 45047 . . . . 5 (𝜑 → ((𝐴𝐸) ∩ 𝐹) ⊆ 𝑋)
451, 3, 44omexrcl 46498 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ*)
461, 3, 44omecl 46494 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ (0[,]+∞))
4746xrge0nemnfd 45321 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞)
4845, 47jca 511 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞))
495ssdifssd 4106 . . . . . 6 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
5049ssdifssd 4106 . . . . 5 (𝜑 → ((𝐴𝐸) ∖ 𝐹) ⊆ 𝑋)
511, 3, 50omexrcl 46498 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ*)
521, 3, 50omecl 46494 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ (0[,]+∞))
5352xrge0nemnfd 45321 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)
5451, 53jca 511 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞))
55 xaddass 13185 . . 3 ((((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)) → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
5641, 48, 54, 55syl3anc 1373 . 2 (𝜑 → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
571, 2, 3, 42, 49caragensplit 46491 . . . 4 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = (𝑂‘(𝐴𝐸)))
5857oveq2d 7385 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
591, 2, 3, 4, 5caragensplit 46491 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
6058, 59eqtrd 2764 . 2 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = (𝑂𝐴))
6136, 56, 603eqtrd 2768 1 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292   cuni 4867  dom cdm 5631  cfv 6499  (class class class)co 7369  -∞cmnf 11182  *cxr 11183   +𝑒 cxad 13046  OutMeascome 46480  CaraGenccaragen 46482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-addass 11109  ax-i2m1 11112  ax-rnegex 11115  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-xadd 13049  df-icc 13289  df-ome 46481  df-caragen 46483
This theorem is referenced by:  caragenuncl  46504
  Copyright terms: Public domain W3C validator