Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncllem Structured version   Visualization version   GIF version

Theorem caragenuncllem 46541
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncllem.o (𝜑𝑂 ∈ OutMeas)
caragenuncllem.s 𝑆 = (CaraGen‘𝑂)
caragenuncllem.e (𝜑𝐸𝑆)
caragenuncllem.f (𝜑𝐹𝑆)
caragenuncllem.x 𝑋 = dom 𝑂
caragenuncllem.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragenuncllem (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))

Proof of Theorem caragenuncllem
StepHypRef Expression
1 caragenuncllem.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
2 caragenuncllem.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
3 caragenuncllem.x . . . . . 6 𝑋 = dom 𝑂
4 caragenuncllem.e . . . . . 6 (𝜑𝐸𝑆)
5 caragenuncllem.a . . . . . . 7 (𝜑𝐴𝑋)
65ssinss1d 4222 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐸𝐹)) ⊆ 𝑋)
71, 2, 3, 4, 6caragensplit 46529 . . . . 5 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = (𝑂‘(𝐴 ∩ (𝐸𝐹))))
87eqcomd 2741 . . . 4 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))))
9 inass 4203 . . . . . . . 8 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸))
10 incom 4184 . . . . . . . . . 10 ((𝐸𝐹) ∩ 𝐸) = (𝐸 ∩ (𝐸𝐹))
11 inabs 4241 . . . . . . . . . 10 (𝐸 ∩ (𝐸𝐹)) = 𝐸
1210, 11eqtri 2758 . . . . . . . . 9 ((𝐸𝐹) ∩ 𝐸) = 𝐸
1312ineq2i 4192 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸)) = (𝐴𝐸)
149, 13eqtri 2758 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴𝐸)
1514fveq2i 6879 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) = (𝑂‘(𝐴𝐸))
16 incom 4184 . . . . . . . . . 10 ((𝐴𝐸) ∩ 𝐹) = (𝐹 ∩ (𝐴𝐸))
17 indifcom 4258 . . . . . . . . . 10 (𝐹 ∩ (𝐴𝐸)) = (𝐴 ∩ (𝐹𝐸))
1816, 17eqtr2i 2759 . . . . . . . . 9 (𝐴 ∩ (𝐹𝐸)) = ((𝐴𝐸) ∩ 𝐹)
1918eqcomi 2744 . . . . . . . 8 ((𝐴𝐸) ∩ 𝐹) = (𝐴 ∩ (𝐹𝐸))
20 difundir 4266 . . . . . . . . . 10 ((𝐸𝐹) ∖ 𝐸) = ((𝐸𝐸) ∪ (𝐹𝐸))
21 difid 4351 . . . . . . . . . . 11 (𝐸𝐸) = ∅
2221uneq1i 4139 . . . . . . . . . 10 ((𝐸𝐸) ∪ (𝐹𝐸)) = (∅ ∪ (𝐹𝐸))
23 0un 4371 . . . . . . . . . 10 (∅ ∪ (𝐹𝐸)) = (𝐹𝐸)
2420, 22, 233eqtrri 2763 . . . . . . . . 9 (𝐹𝐸) = ((𝐸𝐹) ∖ 𝐸)
2524ineq2i 4192 . . . . . . . 8 (𝐴 ∩ (𝐹𝐸)) = (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸))
26 indif2 4256 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸)) = ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)
2719, 25, 263eqtrri 2763 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸) = ((𝐴𝐸) ∩ 𝐹)
2827fveq2i 6879 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)) = (𝑂‘((𝐴𝐸) ∩ 𝐹))
2915, 28oveq12i 7417 . . . . 5 ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹)))
3029a1i 11 . . . 4 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
31 eqidd 2736 . . . 4 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
328, 30, 313eqtrd 2774 . . 3 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
33 difun1 4274 . . . . 5 (𝐴 ∖ (𝐸𝐹)) = ((𝐴𝐸) ∖ 𝐹)
3433fveq2i 6879 . . . 4 (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹))
3534a1i 11 . . 3 (𝜑 → (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹)))
3632, 35oveq12d 7423 . 2 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))))
375ssinss1d 4222 . . . . 5 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
381, 3, 37omexrcl 46536 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ ℝ*)
391, 3, 37omecl 46532 . . . . 5 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ (0[,]+∞))
4039xrge0nemnfd 45359 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ≠ -∞)
4138, 40jca 511 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞))
42 caragenuncllem.f . . . . . . 7 (𝜑𝐹𝑆)
431, 2, 42, 3caragenelss 46530 . . . . . 6 (𝜑𝐹𝑋)
4443ssinss2d 45084 . . . . 5 (𝜑 → ((𝐴𝐸) ∩ 𝐹) ⊆ 𝑋)
451, 3, 44omexrcl 46536 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ*)
461, 3, 44omecl 46532 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ (0[,]+∞))
4746xrge0nemnfd 45359 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞)
4845, 47jca 511 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞))
495ssdifssd 4122 . . . . . 6 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
5049ssdifssd 4122 . . . . 5 (𝜑 → ((𝐴𝐸) ∖ 𝐹) ⊆ 𝑋)
511, 3, 50omexrcl 46536 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ*)
521, 3, 50omecl 46532 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ (0[,]+∞))
5352xrge0nemnfd 45359 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)
5451, 53jca 511 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞))
55 xaddass 13265 . . 3 ((((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)) → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
5641, 48, 54, 55syl3anc 1373 . 2 (𝜑 → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
571, 2, 3, 42, 49caragensplit 46529 . . . 4 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = (𝑂‘(𝐴𝐸)))
5857oveq2d 7421 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
591, 2, 3, 4, 5caragensplit 46529 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
6058, 59eqtrd 2770 . 2 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = (𝑂𝐴))
6136, 56, 603eqtrd 2774 1 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   cuni 4883  dom cdm 5654  cfv 6531  (class class class)co 7405  -∞cmnf 11267  *cxr 11268   +𝑒 cxad 13126  OutMeascome 46518  CaraGenccaragen 46520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-addass 11194  ax-i2m1 11197  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-xadd 13129  df-icc 13369  df-ome 46519  df-caragen 46521
This theorem is referenced by:  caragenuncl  46542
  Copyright terms: Public domain W3C validator