MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssinss1d Structured version   Visualization version   GIF version

Theorem ssinss1d 4212
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
ssinss1d.1 (𝜑𝐴𝐶)
Assertion
Ref Expression
ssinss1d (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssinss1d
StepHypRef Expression
1 ssinss1d.1 . 2 (𝜑𝐴𝐶)
2 ssinss1 4211 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3915  wss 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3923  df-ss 3933
This theorem is referenced by:  exsslsb  33598  ssinss2d  45047  ovolsplit  45979  caragenuncllem  46503  carageniuncllem1  46512  ovnsplit  46639  vonvolmbllem  46651  vonvolmbl  46652
  Copyright terms: Public domain W3C validator