Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinss1d Structured version   Visualization version   GIF version

Theorem ssinss1d 44189
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
ssinss1d.1 (𝜑𝐴𝐶)
Assertion
Ref Expression
ssinss1d (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssinss1d
StepHypRef Expression
1 ssinss1d.1 . 2 (𝜑𝐴𝐶)
2 ssinss1 4229 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3939  wss 3940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3947  df-ss 3957
This theorem is referenced by:  ssinss2d  44201  ovolsplit  45155  caragenuncllem  45679  carageniuncllem1  45688  ovnsplit  45815  vonvolmbllem  45827  vonvolmbl  45828
  Copyright terms: Public domain W3C validator