Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinss1d Structured version   Visualization version   GIF version

Theorem ssinss1d 42077
 Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
ssinss1d.1 (𝜑𝐴𝐶)
Assertion
Ref Expression
ssinss1d (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssinss1d
StepHypRef Expression
1 ssinss1d.1 . 2 (𝜑𝐴𝐶)
2 ssinss1 4142 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∩ cin 3857   ⊆ wss 3858 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-in 3865  df-ss 3875 This theorem is referenced by:  ssinss2d  42089  ovolsplit  43018  caragenuncllem  43539  carageniuncllem1  43548  ovnsplit  43675  vonvolmbllem  43687  vonvolmbl  43688
 Copyright terms: Public domain W3C validator