| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1d | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ssinss1d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssinss1d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssinss1d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 2 | ssinss1 4226 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-ss 3948 |
| This theorem is referenced by: exsslsb 33587 ssinss2d 45037 ovolsplit 45975 caragenuncllem 46499 carageniuncllem1 46508 ovnsplit 46635 vonvolmbllem 46647 vonvolmbl 46648 |
| Copyright terms: Public domain | W3C validator |