Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssinss1d | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ssinss1d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssinss1d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssinss1d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
2 | ssinss1 4168 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssinss2d 42497 ovolsplit 43419 caragenuncllem 43940 carageniuncllem1 43949 ovnsplit 44076 vonvolmbllem 44088 vonvolmbl 44089 |
Copyright terms: Public domain | W3C validator |