Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3945 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Copyright terms: Public domain | W3C validator |