| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| syl3anl1.1 | ⊢ (𝜑 → 𝜓) |
| syl3anl1.2 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl3anl1 | ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1152 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | syl3anl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dif1enlem 9175 suprzcl 12678 latjcom 18462 latmcom 18478 ring1zr 20741 lgsdinn0 27313 revpfxsfxrev 35143 crngohomfo 38035 dalem53 39749 |
| Copyright terms: Public domain | W3C validator |