Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anl1 Structured version   Visualization version   GIF version

Theorem syl3anl1 1409
 Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl1.1 (𝜑𝜓)
syl3anl1.2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl3anl1 (((𝜑𝜒𝜃) ∧ 𝜏) → 𝜂)

Proof of Theorem syl3anl1
StepHypRef Expression
1 syl3anl1.1 . . 3 (𝜑𝜓)
213anim1i 1149 . 2 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
3 syl3anl1.2 . 2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
42, 3sylan 583 1 (((𝜑𝜒𝜃) ∧ 𝜏) → 𝜂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  suprzcl  12050  latjcom  17660  latmcom  17676  ring1zr  20039  lgsdinn0  25927  revpfxsfxrev  32436  crngohomfo  35402  dalem53  36979
 Copyright terms: Public domain W3C validator