|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl3anl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| syl3anl1.1 | ⊢ (𝜑 → 𝜓) | 
| syl3anl1.2 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
| Ref | Expression | 
|---|---|
| syl3anl1 | ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3anim1i 1152 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| 3 | syl3anl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: dif1enlem 9197 suprzcl 12700 latjcom 18493 latmcom 18509 ring1zr 20778 lgsdinn0 27390 revpfxsfxrev 35122 crngohomfo 38014 dalem53 39728 | 
| Copyright terms: Public domain | W3C validator |