MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmcom Structured version   Visualization version   GIF version

Theorem latmcom 18533
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
latmcom.b 𝐵 = (Base‘𝐾)
latmcom.m = (meet‘𝐾)
Assertion
Ref Expression
latmcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latmcom
StepHypRef Expression
1 opelxpi 5737 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latmcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 eqid 2740 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
5 latmcom.m . . . . . . 7 = (meet‘𝐾)
63, 4, 5islat 18503 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
7 simprr 772 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 217 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1133 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2847 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5737 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 458 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2847 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 511 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18508 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 5meetcom 18474 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1412 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 686 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  Posetcpo 18377  joincjn 18381  meetcmee 18382  Latclat 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-glb 18417  df-meet 18419  df-lat 18502
This theorem is referenced by:  latleeqm2  18538  latmlem2  18540  latmlej21  18550  latmlej22  18551  mod2ile  18564  olm12  39184  latm12  39186  latm32  39187  latmrot  39188  olm02  39193  omllaw2N  39200  cmtcomlemN  39204  cmtbr3N  39210  omlfh1N  39214  omlmod1i2N  39216  omlspjN  39217  cvlcvrp  39296  intnatN  39364  cvrexch  39377  cvrat4  39400  2atjm  39402  1cvrat  39433  2at0mat0  39482  dalem4  39622  dalem56  39685  atmod2i1  39818  atmod2i2  39819  llnmod2i2  39820  atmod3i1  39821  atmod3i2  39822  llnexchb2lem  39825  dalawlem3  39830  dalawlem4  39831  dalawlem6  39833  dalawlem9  39836  dalawlem11  39838  dalawlem12  39839  dalawlem15  39842  lhpmcvr  39980  4atexlemc  40026  cdleme20zN  40258  cdleme20d  40269  cdleme20l  40279  cdleme20m  40280  cdlemg12  40607  cdlemg17  40634  cdlemg19  40641  cdlemg44a  40688  dihmeetlem17N  41280  dihmeetlem20N  41283  dihmeetALTN  41284
  Copyright terms: Public domain W3C validator