MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmcom Structured version   Visualization version   GIF version

Theorem latmcom 18488
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
latmcom.b 𝐵 = (Base‘𝐾)
latmcom.m = (meet‘𝐾)
Assertion
Ref Expression
latmcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latmcom
StepHypRef Expression
1 opelxpi 5719 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1127 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latmcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 eqid 2726 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
5 latmcom.m . . . . . . 7 = (meet‘𝐾)
63, 4, 5islat 18458 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
7 simprr 771 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 216 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2829 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5719 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 457 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1127 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2829 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 510 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18463 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 5meetcom 18429 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1409 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 685 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cop 4639   × cxp 5680  dom cdm 5682  cfv 6554  (class class class)co 7424  Basecbs 17213  Posetcpo 18332  joincjn 18336  meetcmee 18337  Latclat 18456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-glb 18372  df-meet 18374  df-lat 18457
This theorem is referenced by:  latleeqm2  18493  latmlem2  18495  latmlej21  18505  latmlej22  18506  mod2ile  18519  olm12  38926  latm12  38928  latm32  38929  latmrot  38930  olm02  38935  omllaw2N  38942  cmtcomlemN  38946  cmtbr3N  38952  omlfh1N  38956  omlmod1i2N  38958  omlspjN  38959  cvlcvrp  39038  intnatN  39106  cvrexch  39119  cvrat4  39142  2atjm  39144  1cvrat  39175  2at0mat0  39224  dalem4  39364  dalem56  39427  atmod2i1  39560  atmod2i2  39561  llnmod2i2  39562  atmod3i1  39563  atmod3i2  39564  llnexchb2lem  39567  dalawlem3  39572  dalawlem4  39573  dalawlem6  39575  dalawlem9  39578  dalawlem11  39580  dalawlem12  39581  dalawlem15  39584  lhpmcvr  39722  4atexlemc  39768  cdleme20zN  40000  cdleme20d  40011  cdleme20l  40021  cdleme20m  40022  cdlemg12  40349  cdlemg17  40376  cdlemg19  40383  cdlemg44a  40430  dihmeetlem17N  41022  dihmeetlem20N  41025  dihmeetALTN  41026
  Copyright terms: Public domain W3C validator