MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmcom Structured version   Visualization version   GIF version

Theorem latmcom 18181
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
latmcom.b 𝐵 = (Base‘𝐾)
latmcom.m = (meet‘𝐾)
Assertion
Ref Expression
latmcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latmcom
StepHypRef Expression
1 opelxpi 5626 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1129 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latmcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 eqid 2738 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
5 latmcom.m . . . . . . 7 = (meet‘𝐾)
63, 4, 5islat 18151 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
7 simprr 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 216 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1132 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5626 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 459 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1129 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 512 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18156 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 5meetcom 18122 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1411 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 684 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  Basecbs 16912  Posetcpo 18025  joincjn 18029  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-glb 18065  df-meet 18067  df-lat 18150
This theorem is referenced by:  latleeqm2  18186  latmlem2  18188  latmlej21  18198  latmlej22  18199  mod2ile  18212  olm12  37242  latm12  37244  latm32  37245  latmrot  37246  olm02  37251  omllaw2N  37258  cmtcomlemN  37262  cmtbr3N  37268  omlfh1N  37272  omlmod1i2N  37274  omlspjN  37275  cvlcvrp  37354  intnatN  37421  cvrexch  37434  cvrat4  37457  2atjm  37459  1cvrat  37490  2at0mat0  37539  dalem4  37679  dalem56  37742  atmod2i1  37875  atmod2i2  37876  llnmod2i2  37877  atmod3i1  37878  atmod3i2  37879  llnexchb2lem  37882  dalawlem3  37887  dalawlem4  37888  dalawlem6  37890  dalawlem9  37893  dalawlem11  37895  dalawlem12  37896  dalawlem15  37899  lhpmcvr  38037  4atexlemc  38083  cdleme20zN  38315  cdleme20d  38326  cdleme20l  38336  cdleme20m  38337  cdlemg12  38664  cdlemg17  38691  cdlemg19  38698  cdlemg44a  38745  dihmeetlem17N  39337  dihmeetlem20N  39340  dihmeetALTN  39341
  Copyright terms: Public domain W3C validator