Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
latmcom.b | ⊢ 𝐵 = (Base‘𝐾) |
latmcom.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5626 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
2 | 1 | 3adant1 1129 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
3 | latmcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
4 | eqid 2738 | . . . . . . 7 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | latmcom.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
6 | 3, 4, 5 | islat 18151 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
7 | simprr 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
8 | 6, 7 | sylbi 216 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
9 | 8 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
10 | 2, 9 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
11 | opelxpi 5626 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
12 | 11 | ancoms 459 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
13 | 12 | 3adant1 1129 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
14 | 13, 9 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∧ ) |
15 | 10, 14 | jca 512 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) |
16 | latpos 18156 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 3, 5 | meetcom 18122 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
18 | 16, 17 | syl3anl1 1411 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
19 | 15, 18 | mpdan 684 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Posetcpo 18025 joincjn 18029 meetcmee 18030 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-glb 18065 df-meet 18067 df-lat 18150 |
This theorem is referenced by: latleeqm2 18186 latmlem2 18188 latmlej21 18198 latmlej22 18199 mod2ile 18212 olm12 37242 latm12 37244 latm32 37245 latmrot 37246 olm02 37251 omllaw2N 37258 cmtcomlemN 37262 cmtbr3N 37268 omlfh1N 37272 omlmod1i2N 37274 omlspjN 37275 cvlcvrp 37354 intnatN 37421 cvrexch 37434 cvrat4 37457 2atjm 37459 1cvrat 37490 2at0mat0 37539 dalem4 37679 dalem56 37742 atmod2i1 37875 atmod2i2 37876 llnmod2i2 37877 atmod3i1 37878 atmod3i2 37879 llnexchb2lem 37882 dalawlem3 37887 dalawlem4 37888 dalawlem6 37890 dalawlem9 37893 dalawlem11 37895 dalawlem12 37896 dalawlem15 37899 lhpmcvr 38037 4atexlemc 38083 cdleme20zN 38315 cdleme20d 38326 cdleme20l 38336 cdleme20m 38337 cdlemg12 38664 cdlemg17 38691 cdlemg19 38698 cdlemg44a 38745 dihmeetlem17N 39337 dihmeetlem20N 39340 dihmeetALTN 39341 |
Copyright terms: Public domain | W3C validator |