| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmcom | Structured version Visualization version GIF version | ||
| Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmcom.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5668 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 3 | latmcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | latmcom.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
| 6 | 3, 4, 5 | islat 18374 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
| 7 | simprr 772 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
| 8 | 6, 7 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
| 9 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
| 10 | 2, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 11 | opelxpi 5668 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 13 | 12 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 14 | 13, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∧ ) |
| 15 | 10, 14 | jca 511 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) |
| 16 | latpos 18379 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 3, 5 | meetcom 18343 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| 18 | 16, 17 | syl3anl1 1414 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| 19 | 15, 18 | mpdan 687 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 × cxp 5629 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Posetcpo 18248 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-glb 18286 df-meet 18288 df-lat 18373 |
| This theorem is referenced by: latleeqm2 18409 latmlem2 18411 latmlej21 18421 latmlej22 18422 mod2ile 18435 olm12 39214 latm12 39216 latm32 39217 latmrot 39218 olm02 39223 omllaw2N 39230 cmtcomlemN 39234 cmtbr3N 39240 omlfh1N 39244 omlmod1i2N 39246 omlspjN 39247 cvlcvrp 39326 intnatN 39394 cvrexch 39407 cvrat4 39430 2atjm 39432 1cvrat 39463 2at0mat0 39512 dalem4 39652 dalem56 39715 atmod2i1 39848 atmod2i2 39849 llnmod2i2 39850 atmod3i1 39851 atmod3i2 39852 llnexchb2lem 39855 dalawlem3 39860 dalawlem4 39861 dalawlem6 39863 dalawlem9 39866 dalawlem11 39868 dalawlem12 39869 dalawlem15 39872 lhpmcvr 40010 4atexlemc 40056 cdleme20zN 40288 cdleme20d 40299 cdleme20l 40309 cdleme20m 40310 cdlemg12 40637 cdlemg17 40664 cdlemg19 40671 cdlemg44a 40718 dihmeetlem17N 41310 dihmeetlem20N 41313 dihmeetALTN 41314 |
| Copyright terms: Public domain | W3C validator |