![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
latmcom.b | ⊢ 𝐵 = (Base‘𝐾) |
latmcom.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5448 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
2 | 1 | 3adant1 1111 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
3 | latmcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
4 | eqid 2780 | . . . . . . 7 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | latmcom.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
6 | 3, 4, 5 | islat 17527 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
7 | simprr 761 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
8 | 6, 7 | sylbi 209 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
9 | 8 | 3ad2ant1 1114 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
10 | 2, 9 | eleqtrrd 2871 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
11 | opelxpi 5448 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
12 | 11 | ancoms 451 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
13 | 12 | 3adant1 1111 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
14 | 13, 9 | eleqtrrd 2871 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∧ ) |
15 | 10, 14 | jca 504 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) |
16 | latpos 17530 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 3, 5 | meetcom 17512 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
18 | 16, 17 | syl3anl1 1393 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
19 | 15, 18 | mpdan 675 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 〈cop 4450 × cxp 5409 dom cdm 5411 ‘cfv 6193 (class class class)co 6982 Basecbs 16345 Posetcpo 17420 joincjn 17424 meetcmee 17425 Latclat 17525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-glb 17455 df-meet 17457 df-lat 17526 |
This theorem is referenced by: latleeqm2 17560 latmlem2 17562 latmlej21 17572 latmlej22 17573 mod2ile 17586 olm12 35849 latm12 35851 latm32 35852 latmrot 35853 olm02 35858 omllaw2N 35865 cmtcomlemN 35869 cmtbr3N 35875 omlfh1N 35879 omlmod1i2N 35881 omlspjN 35882 cvlcvrp 35961 intnatN 36028 cvrexch 36041 cvrat4 36064 2atjm 36066 1cvrat 36097 2at0mat0 36146 dalem4 36286 dalem56 36349 atmod2i1 36482 atmod2i2 36483 llnmod2i2 36484 atmod3i1 36485 atmod3i2 36486 llnexchb2lem 36489 dalawlem3 36494 dalawlem4 36495 dalawlem6 36497 dalawlem9 36500 dalawlem11 36502 dalawlem12 36503 dalawlem15 36506 lhpmcvr 36644 4atexlemc 36690 cdleme20zN 36922 cdleme20d 36933 cdleme20l 36943 cdleme20m 36944 cdlemg12 37271 cdlemg17 37298 cdlemg19 37305 cdlemg44a 37352 dihmeetlem17N 37944 dihmeetlem20N 37947 dihmeetALTN 37948 |
Copyright terms: Public domain | W3C validator |