![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
latmcom.b | β’ π΅ = (BaseβπΎ) |
latmcom.m | β’ β§ = (meetβπΎ) |
Ref | Expression |
---|---|
latmcom | β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5714 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
2 | 1 | 3adant1 1131 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
3 | latmcom.b | . . . . . . 7 β’ π΅ = (BaseβπΎ) | |
4 | eqid 2733 | . . . . . . 7 β’ (joinβπΎ) = (joinβπΎ) | |
5 | latmcom.m | . . . . . . 7 β’ β§ = (meetβπΎ) | |
6 | 3, 4, 5 | islat 18386 | . . . . . 6 β’ (πΎ β Lat β (πΎ β Poset β§ (dom (joinβπΎ) = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅)))) |
7 | simprr 772 | . . . . . 6 β’ ((πΎ β Poset β§ (dom (joinβπΎ) = (π΅ Γ π΅) β§ dom β§ = (π΅ Γ π΅))) β dom β§ = (π΅ Γ π΅)) | |
8 | 6, 7 | sylbi 216 | . . . . 5 β’ (πΎ β Lat β dom β§ = (π΅ Γ π΅)) |
9 | 8 | 3ad2ant1 1134 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β dom β§ = (π΅ Γ π΅)) |
10 | 2, 9 | eleqtrrd 2837 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β§ ) |
11 | opelxpi 5714 | . . . . . 6 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
12 | 11 | ancoms 460 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
13 | 12 | 3adant1 1131 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
14 | 13, 9 | eleqtrrd 2837 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β§ ) |
15 | 10, 14 | jca 513 | . 2 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (β¨π, πβ© β dom β§ β§ β¨π, πβ© β dom β§ )) |
16 | latpos 18391 | . . 3 β’ (πΎ β Lat β πΎ β Poset) | |
17 | 3, 5 | meetcom 18357 | . . 3 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β§ β§ β¨π, πβ© β dom β§ )) β (π β§ π) = (π β§ π)) |
18 | 16, 17 | syl3anl1 1413 | . 2 β’ (((πΎ β Lat β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β§ β§ β¨π, πβ© β dom β§ )) β (π β§ π) = (π β§ π)) |
19 | 15, 18 | mpdan 686 | 1 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β¨cop 4635 Γ cxp 5675 dom cdm 5677 βcfv 6544 (class class class)co 7409 Basecbs 17144 Posetcpo 18260 joincjn 18264 meetcmee 18265 Latclat 18384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-glb 18300 df-meet 18302 df-lat 18385 |
This theorem is referenced by: latleeqm2 18421 latmlem2 18423 latmlej21 18433 latmlej22 18434 mod2ile 18447 olm12 38098 latm12 38100 latm32 38101 latmrot 38102 olm02 38107 omllaw2N 38114 cmtcomlemN 38118 cmtbr3N 38124 omlfh1N 38128 omlmod1i2N 38130 omlspjN 38131 cvlcvrp 38210 intnatN 38278 cvrexch 38291 cvrat4 38314 2atjm 38316 1cvrat 38347 2at0mat0 38396 dalem4 38536 dalem56 38599 atmod2i1 38732 atmod2i2 38733 llnmod2i2 38734 atmod3i1 38735 atmod3i2 38736 llnexchb2lem 38739 dalawlem3 38744 dalawlem4 38745 dalawlem6 38747 dalawlem9 38750 dalawlem11 38752 dalawlem12 38753 dalawlem15 38756 lhpmcvr 38894 4atexlemc 38940 cdleme20zN 39172 cdleme20d 39183 cdleme20l 39193 cdleme20m 39194 cdlemg12 39521 cdlemg17 39548 cdlemg19 39555 cdlemg44a 39602 dihmeetlem17N 40194 dihmeetlem20N 40197 dihmeetALTN 40198 |
Copyright terms: Public domain | W3C validator |