Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revpfxsfxrev Structured version   Visualization version   GIF version

Theorem revpfxsfxrev 32475
Description: The reverse of a prefix of a word is equal to the same-length suffix of the reverse of that word. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
revpfxsfxrev ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))

Proof of Theorem revpfxsfxrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pfxcl 14030 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉)
2 revcl 14114 . . . . 5 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
3 wrdfn 13871 . . . . 5 ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
41, 2, 33syl 18 . . . 4 (𝑊 ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
54adantr 484 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
6 revlen 14115 . . . . . . . 8 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
71, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
87adantr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
9 pfxlen 14036 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿)
108, 9eqtrd 2833 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
1110oveq2d 7151 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))) = (0..^𝐿))
1211fneq2d 6417 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))) ↔ (reverse‘(𝑊 prefix 𝐿)) Fn (0..^𝐿)))
135, 12mpbid 235 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^𝐿))
14 revcl 14114 . . . . 5 (𝑊 ∈ Word 𝑉 → (reverse‘𝑊) ∈ Word 𝑉)
15 swrdcl 13998 . . . . 5 ((reverse‘𝑊) ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) ∈ Word 𝑉)
16 wrdfn 13871 . . . . 5 (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
1714, 15, 163syl 18 . . . 4 (𝑊 ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
1817adantr 484 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
19 fznn0sub2 13009 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
20 lencl 13876 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
21 nn0fz0 13000 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2220, 21sylib 221 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
23 revlen 14115 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2423oveq2d 7151 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (0...(♯‘(reverse‘𝑊))) = (0...(♯‘𝑊)))
2522, 24eleqtrrd 2893 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊))))
26 swrdlen 14000 . . . . . . . 8 (((reverse‘𝑊) ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
2714, 19, 25, 26syl3an 1157 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
28273anidm13 1417 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
2920nn0cnd 11945 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
3029adantr 484 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ ℂ)
31 elfzelz 12902 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
3231zcnd 12076 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ)
3332adantl 485 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ ℂ)
3430, 33nncand 10991 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) = 𝐿)
3528, 34eqtrd 2833 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = 𝐿)
3635oveq2d 7151 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))) = (0..^𝐿))
3736fneq2d 6417 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))) ↔ ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^𝐿)))
3818, 37mpbid 235 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^𝐿))
39 simp1 1133 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
40 simp3 1135 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^𝐿))
419oveq2d 7151 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘(𝑊 prefix 𝐿))) = (0..^𝐿))
42413adant3 1129 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (0..^(♯‘(𝑊 prefix 𝐿))) = (0..^𝐿))
4340, 42eleqtrrd 2893 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿))))
44 revfv 14116 . . . . . . 7 (((𝑊 prefix 𝐿) ∈ Word 𝑉𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿)))) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
451, 44sylan 583 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿)))) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
4639, 43, 45syl2anc 587 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
479oveq1d 7150 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 𝐿)) − 1) = (𝐿 − 1))
4847oveq1d 7150 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥) = ((𝐿 − 1) − 𝑥))
4948fveq2d 6649 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)) = ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)))
50493adant3 1129 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)) = ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)))
51323ad2ant2 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝐿 ∈ ℂ)
52 elfzoelz 13033 . . . . . . . . . 10 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℤ)
5352zcnd 12076 . . . . . . . . 9 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℂ)
54533ad2ant3 1132 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ ℂ)
55 1cnd 10625 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 1 ∈ ℂ)
5651, 54, 55sub32d 11018 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿𝑥) − 1) = ((𝐿 − 1) − 𝑥))
57 ubmelm1fzo 13128 . . . . . . . 8 (𝑥 ∈ (0..^𝐿) → ((𝐿𝑥) − 1) ∈ (0..^𝐿))
58573ad2ant3 1132 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿𝑥) − 1) ∈ (0..^𝐿))
5956, 58eqeltrrd 2891 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿 − 1) − 𝑥) ∈ (0..^𝐿))
60 pfxfv 14035 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ ((𝐿 − 1) − 𝑥) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)) = (𝑊‘((𝐿 − 1) − 𝑥)))
6159, 60syld3an3 1406 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)) = (𝑊‘((𝐿 − 1) − 𝑥)))
6246, 50, 613eqtrd 2837 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (𝑊‘((𝐿 − 1) − 𝑥)))
6334oveq2d 7151 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))) = (0..^𝐿))
6463eleq2d 2875 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))) ↔ 𝑥 ∈ (0..^𝐿)))
6564biimp3ar 1467 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))))
66 id 22 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉))
67663anidm13 1417 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉))
68 swrdfv 14001 . . . . . . . . . 10 ((((reverse‘𝑊) ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
6914, 68syl3anl1 1409 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7025, 69syl3anl3 1411 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7167, 70stoic3 1778 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7219, 71syl3an2 1161 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7365, 72syld3an3 1406 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
74 0z 11980 . . . . . . . . . 10 0 ∈ ℤ
75 elfzuz3 12899 . . . . . . . . . . 11 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐿))
7632addid2d 10830 . . . . . . . . . . . 12 (𝐿 ∈ (0...(♯‘𝑊)) → (0 + 𝐿) = 𝐿)
7776fveq2d 6649 . . . . . . . . . . 11 (𝐿 ∈ (0...(♯‘𝑊)) → (ℤ‘(0 + 𝐿)) = (ℤ𝐿))
7875, 77eleqtrrd 2893 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘(0 + 𝐿)))
79 eluzsub 12262 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 𝐿))) → ((♯‘𝑊) − 𝐿) ∈ (ℤ‘0))
8074, 31, 78, 79mp3an2i 1463 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (ℤ‘0))
81 fzoss1 13059 . . . . . . . . 9 (((♯‘𝑊) − 𝐿) ∈ (ℤ‘0) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83823ad2ant2 1131 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8420nn0zd 12073 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
85843ad2ant1 1130 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (♯‘𝑊) ∈ ℤ)
86313ad2ant2 1131 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝐿 ∈ ℤ)
8785, 86zsubcld 12080 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
88 fzo0addel 13086 . . . . . . . . 9 ((𝑥 ∈ (0..^𝐿) ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))))
8940, 87, 88syl2anc 587 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))))
90303adant3 1129 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (♯‘𝑊) ∈ ℂ)
9151, 90pncan3d 10989 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝐿 + ((♯‘𝑊) − 𝐿)) = (♯‘𝑊))
9291oveq2d 7151 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))) = (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)))
9389, 92eleqtrd 2892 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)))
9483, 93sseldd 3916 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (0..^(♯‘𝑊)))
95 revfv 14116 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))) = (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))))
9639, 94, 95syl2anc 587 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))) = (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))))
9790, 55subcld 10986 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 1) ∈ ℂ)
9887zcnd 12076 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 𝐿) ∈ ℂ)
9997, 54, 98sub32d 11018 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − 𝑥) − ((♯‘𝑊) − 𝐿)) = ((((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) − 𝑥))
10097, 54, 98subsub4d 11017 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − 𝑥) − ((♯‘𝑊) − 𝐿)) = (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))))
10190, 55, 98sub32d 11018 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) = (((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1))
102101oveq1d 7150 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) − 𝑥) = ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥))
10399, 100, 1023eqtr3d 2841 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))) = ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥))
104343adant3 1129 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) = 𝐿)
105104oveq1d 7150 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) = (𝐿 − 1))
106105oveq1d 7150 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥) = ((𝐿 − 1) − 𝑥))
107103, 106eqtrd 2833 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))) = ((𝐿 − 1) − 𝑥))
108107fveq2d 6649 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))) = (𝑊‘((𝐿 − 1) − 𝑥)))
10973, 96, 1083eqtrd 2837 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = (𝑊‘((𝐿 − 1) − 𝑥)))
11062, 109eqtr4d 2836 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥))
1111103expa 1115 . 2 (((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥))
11213, 38, 111eqfnfvd 6782 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  cop 4531   Fn wfn 6319  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   substr csubstr 13993   prefix cpfx 14023  reversecreverse 14111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-substr 13994  df-pfx 14024  df-reverse 14112
This theorem is referenced by:  swrdrevpfx  32476
  Copyright terms: Public domain W3C validator