Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  revpfxsfxrev Structured version   Visualization version   GIF version

Theorem revpfxsfxrev 35093
Description: The reverse of a prefix of a word is equal to the same-length suffix of the reverse of that word. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
revpfxsfxrev ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))

Proof of Theorem revpfxsfxrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pfxcl 14584 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉)
2 revcl 14667 . . . . 5 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
3 wrdfn 14435 . . . . 5 ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
41, 2, 33syl 18 . . . 4 (𝑊 ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
54adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))))
6 revlen 14668 . . . . . . . 8 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
71, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
87adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
9 pfxlen 14590 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿)
108, 9eqtrd 2764 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
1110oveq2d 7365 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))) = (0..^𝐿))
1211fneq2d 6576 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(𝑊 prefix 𝐿)) Fn (0..^(♯‘(reverse‘(𝑊 prefix 𝐿)))) ↔ (reverse‘(𝑊 prefix 𝐿)) Fn (0..^𝐿)))
135, 12mpbid 232 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) Fn (0..^𝐿))
14 revcl 14667 . . . . 5 (𝑊 ∈ Word 𝑉 → (reverse‘𝑊) ∈ Word 𝑉)
15 swrdcl 14552 . . . . 5 ((reverse‘𝑊) ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) ∈ Word 𝑉)
16 wrdfn 14435 . . . . 5 (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
1714, 15, 163syl 18 . . . 4 (𝑊 ∈ Word 𝑉 → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
1817adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))))
19 fznn0sub2 13538 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
20 lencl 14440 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
21 nn0fz0 13528 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2220, 21sylib 218 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
23 revlen 14668 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2423oveq2d 7365 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (0...(♯‘(reverse‘𝑊))) = (0...(♯‘𝑊)))
2522, 24eleqtrrd 2831 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊))))
26 swrdlen 14554 . . . . . . . 8 (((reverse‘𝑊) ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
2714, 19, 25, 26syl3an 1160 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
28273anidm13 1422 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))
2920nn0cnd 12447 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
3029adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ ℂ)
31 elfzelz 13427 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
3231zcnd 12581 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ)
3332adantl 481 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ ℂ)
3430, 33nncand 11480 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) = 𝐿)
3528, 34eqtrd 2764 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)) = 𝐿)
3635oveq2d 7365 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))) = (0..^𝐿))
3736fneq2d 6576 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^(♯‘((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))) ↔ ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^𝐿)))
3818, 37mpbid 232 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩) Fn (0..^𝐿))
39 simp1 1136 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉)
40 simp3 1138 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^𝐿))
419oveq2d 7365 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^(♯‘(𝑊 prefix 𝐿))) = (0..^𝐿))
42413adant3 1132 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (0..^(♯‘(𝑊 prefix 𝐿))) = (0..^𝐿))
4340, 42eleqtrrd 2831 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿))))
44 revfv 14669 . . . . . . 7 (((𝑊 prefix 𝐿) ∈ Word 𝑉𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿)))) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
451, 44sylan 580 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑥 ∈ (0..^(♯‘(𝑊 prefix 𝐿)))) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
4639, 43, 45syl2anc 584 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)))
479oveq1d 7364 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 𝐿)) − 1) = (𝐿 − 1))
4847oveq1d 7364 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥) = ((𝐿 − 1) − 𝑥))
4948fveq2d 6826 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)) = ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)))
50493adant3 1132 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(((♯‘(𝑊 prefix 𝐿)) − 1) − 𝑥)) = ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)))
51323ad2ant2 1134 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝐿 ∈ ℂ)
52 elfzoelz 13562 . . . . . . . . . 10 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℤ)
5352zcnd 12581 . . . . . . . . 9 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℂ)
54533ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ ℂ)
55 1cnd 11110 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 1 ∈ ℂ)
5651, 54, 55sub32d 11507 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿𝑥) − 1) = ((𝐿 − 1) − 𝑥))
57 ubmelm1fzo 13666 . . . . . . . 8 (𝑥 ∈ (0..^𝐿) → ((𝐿𝑥) − 1) ∈ (0..^𝐿))
58573ad2ant3 1135 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿𝑥) − 1) ∈ (0..^𝐿))
5956, 58eqeltrrd 2829 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝐿 − 1) − 𝑥) ∈ (0..^𝐿))
60 pfxfv 14589 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ ((𝐿 − 1) − 𝑥) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)) = (𝑊‘((𝐿 − 1) − 𝑥)))
6159, 60syld3an3 1411 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘((𝐿 − 1) − 𝑥)) = (𝑊‘((𝐿 − 1) − 𝑥)))
6246, 50, 613eqtrd 2768 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (𝑊‘((𝐿 − 1) − 𝑥)))
6334oveq2d 7365 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))) = (0..^𝐿))
6463eleq2d 2814 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))) ↔ 𝑥 ∈ (0..^𝐿)))
6564biimp3ar 1472 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿))))
66 id 22 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉))
67663anidm13 1422 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉))
68 swrdfv 14555 . . . . . . . . . 10 ((((reverse‘𝑊) ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
6914, 68syl3anl1 1414 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘(reverse‘𝑊)))) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7025, 69syl3anl3 1416 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑊 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7167, 70stoic3 1776 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7219, 71syl3an2 1164 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − ((♯‘𝑊) − 𝐿)))) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
7365, 72syld3an3 1411 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))))
74 0z 12482 . . . . . . . . . 10 0 ∈ ℤ
75 elfzuz3 13424 . . . . . . . . . . 11 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐿))
7632addlidd 11317 . . . . . . . . . . . 12 (𝐿 ∈ (0...(♯‘𝑊)) → (0 + 𝐿) = 𝐿)
7776fveq2d 6826 . . . . . . . . . . 11 (𝐿 ∈ (0...(♯‘𝑊)) → (ℤ‘(0 + 𝐿)) = (ℤ𝐿))
7875, 77eleqtrrd 2831 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ‘(0 + 𝐿)))
79 eluzsub 12765 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 𝐿))) → ((♯‘𝑊) − 𝐿) ∈ (ℤ‘0))
8074, 31, 78, 79mp3an2i 1468 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (ℤ‘0))
81 fzoss1 13589 . . . . . . . . 9 (((♯‘𝑊) − 𝐿) ∈ (ℤ‘0) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83823ad2ant2 1134 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8420nn0zd 12497 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
85843ad2ant1 1133 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (♯‘𝑊) ∈ ℤ)
86313ad2ant2 1134 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → 𝐿 ∈ ℤ)
8785, 86zsubcld 12585 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
88 fzo0addel 13621 . . . . . . . . 9 ((𝑥 ∈ (0..^𝐿) ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))))
8940, 87, 88syl2anc 584 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))))
90303adant3 1132 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (♯‘𝑊) ∈ ℂ)
9151, 90pncan3d 11478 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝐿 + ((♯‘𝑊) − 𝐿)) = (♯‘𝑊))
9291oveq2d 7365 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 𝐿)..^(𝐿 + ((♯‘𝑊) − 𝐿))) = (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)))
9389, 92eleqtrd 2830 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (((♯‘𝑊) − 𝐿)..^(♯‘𝑊)))
9483, 93sseldd 3936 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (0..^(♯‘𝑊)))
95 revfv 14669 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑥 + ((♯‘𝑊) − 𝐿)) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))) = (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))))
9639, 94, 95syl2anc 584 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘𝑊)‘(𝑥 + ((♯‘𝑊) − 𝐿))) = (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))))
9790, 55subcld 11475 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 1) ∈ ℂ)
9887zcnd 12581 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − 𝐿) ∈ ℂ)
9997, 54, 98sub32d 11507 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − 𝑥) − ((♯‘𝑊) − 𝐿)) = ((((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) − 𝑥))
10097, 54, 98subsub4d 11506 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − 𝑥) − ((♯‘𝑊) − 𝐿)) = (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))))
10190, 55, 98sub32d 11507 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) = (((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1))
102101oveq1d 7364 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − 1) − ((♯‘𝑊) − 𝐿)) − 𝑥) = ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥))
10399, 100, 1023eqtr3d 2772 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))) = ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥))
104343adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) = 𝐿)
105104oveq1d 7364 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) = (𝐿 − 1))
106105oveq1d 7364 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((((♯‘𝑊) − ((♯‘𝑊) − 𝐿)) − 1) − 𝑥) = ((𝐿 − 1) − 𝑥))
107103, 106eqtrd 2764 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿))) = ((𝐿 − 1) − 𝑥))
108107fveq2d 6826 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑊‘(((♯‘𝑊) − 1) − (𝑥 + ((♯‘𝑊) − 𝐿)))) = (𝑊‘((𝐿 − 1) − 𝑥)))
10973, 96, 1083eqtrd 2768 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥) = (𝑊‘((𝐿 − 1) − 𝑥)))
11062, 109eqtr4d 2767 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥))
1111103expa 1118 . 2 (((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝑥 ∈ (0..^𝐿)) → ((reverse‘(𝑊 prefix 𝐿))‘𝑥) = (((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩)‘𝑥))
11213, 38, 111eqfnfvd 6968 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr ⟨((♯‘𝑊) − 𝐿), (♯‘𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  cop 4583   Fn wfn 6477  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420   substr csubstr 14547   prefix cpfx 14577  reversecreverse 14664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-substr 14548  df-pfx 14578  df-reverse 14665
This theorem is referenced by:  swrdrevpfx  35094
  Copyright terms: Public domain W3C validator