MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdinn0 Structured version   Visualization version   GIF version

Theorem lgsdinn0 26029
Description: Variation on lgsdi 26018 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdinn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7159 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁))
21oveq1d 7166 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
32eqeq2d 2770 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))))
4 sq1 13609 . . . . . . . . . . . . . . . 16 (1↑2) = 1
54eqeq2i 2772 . . . . . . . . . . . . . . 15 ((𝐴↑2) = (1↑2) ↔ (𝐴↑2) = 1)
6 nn0re 11944 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 nn0ge0 11960 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
8 1re 10680 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
9 0le1 11202 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
10 sq11 13547 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
118, 9, 10mpanr12 705 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
126, 7, 11syl2anc 588 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
1312adantr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
145, 13bitr3id 288 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ↔ 𝐴 = 1))
1514biimpa 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 = 1)
1615oveq1d 7166 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = (1 /L 𝑥))
17 1lgs 26024 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (1 /L 𝑥) = 1)
1817ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 /L 𝑥) = 1)
1916, 18eqtrd 2794 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = 1)
2019oveq1d 7166 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = (1 · (𝐴 /L 0)))
21 nn0z 12045 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℤ)
23 0z 12032 . . . . . . . . . . . . 13 0 ∈ ℤ
24 lgscl 25995 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
2522, 23, 24sylancl 590 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℤ)
2625zcnd 12128 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℂ)
2726mulid2d 10698 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 · (𝐴 /L 0)) = (𝐴 /L 0))
2820, 27eqtr2d 2795 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
29 lgscl 25995 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3021, 29sylan 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3130zcnd 12128 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℂ)
3231adantr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 𝑥) ∈ ℂ)
3332mul01d 10878 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · 0) = 0)
3421adantr 485 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
35 lgs0 25994 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3634, 35syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
37 ifnefalse 4433 . . . . . . . . . . . 12 ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) = 0)
3836, 37sylan9eq 2814 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = 0)
3938oveq2d 7167 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑥) · 0))
4033, 39, 383eqtr4rd 2805 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4128, 40pm2.61dane 3039 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4241ralrimiva 3114 . . . . . . 7 (𝐴 ∈ ℕ0 → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
43423ad2ant1 1131 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
44 simp3 1136 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
453, 43, 44rspcdva 3544 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
4645adantr 485 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
47213ad2ant1 1131 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
4847, 23, 24sylancl 590 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
4948zcnd 12128 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℂ)
5049adantr 485 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) ∈ ℂ)
51 lgscl 25995 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5247, 44, 51syl2anc 588 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5352zcnd 12128 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
5453adantr 485 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈ ℂ)
5550, 54mulcomd 10701 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 0) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
5646, 55eqtr4d 2797 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
57 oveq1 7158 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
5844zcnd 12128 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
5958mul02d 10877 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
6057, 59sylan9eqr 2816 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0)
6160oveq2d 7167 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
62 simpr 489 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
6362oveq2d 7167 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0))
6463oveq1d 7166 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
6556, 61, 643eqtr4d 2804 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
66 oveq2 7159 . . . . . . 7 (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀))
6766oveq1d 7166 . . . . . 6 (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
6867eqeq2d 2770 . . . . 5 (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))))
69 simp2 1135 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
7068, 43, 69rspcdva 3544 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7170adantr 485 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
72 oveq2 7159 . . . . 5 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
7369zcnd 12128 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7473mul01d 10878 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
7572, 74sylan9eqr 2816 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0)
7675oveq2d 7167 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
77 simpr 489 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
7877oveq2d 7167 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0))
7978oveq2d 7167 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
8071, 76, 793eqtr4d 2804 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
81 lgsdi 26018 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8221, 81syl3anl1 1410 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8365, 80, 82pm2.61da2ne 3040 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  ifcif 4421   class class class wbr 5033  (class class class)co 7151  cc 10574  cr 10575  0cc0 10576  1c1 10577   · cmul 10581  cle 10715  2c2 11730  0cn0 11935  cz 12021  cexp 13480   /L clgs 25978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8940  df-inf 8941  df-dju 9364  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-xnn0 12008  df-z 12022  df-uz 12284  df-q 12390  df-rp 12432  df-fz 12941  df-fzo 13084  df-fl 13212  df-mod 13288  df-seq 13420  df-exp 13481  df-hash 13742  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-dvds 15657  df-gcd 15895  df-prm 16069  df-phi 16159  df-pc 16230  df-lgs 25979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator