Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁)) |
2 | 1 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0))) |
3 | 2 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) =
((𝐴 /L
𝑁) · (𝐴 /L
0)))) |
4 | | sq1 13840 |
. . . . . . . . . . . . . . . 16
⊢
(1↑2) = 1 |
5 | 4 | eqeq2i 2751 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴↑2) = (1↑2) ↔
(𝐴↑2) =
1) |
6 | | nn0re 12172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
7 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
8 | | 1re 10906 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
9 | | 0le1 11428 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
1 |
10 | | sq11 13778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
11 | 8, 9, 10 | mpanr12 701 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → ((𝐴↑2) = (1↑2) ↔
𝐴 = 1)) |
12 | 6, 7, 11 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℕ0
→ ((𝐴↑2) =
(1↑2) ↔ 𝐴 =
1)) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐴↑2) =
(1↑2) ↔ 𝐴 =
1)) |
14 | 5, 13 | bitr3id 284 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐴↑2) = 1
↔ 𝐴 =
1)) |
15 | 14 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ 𝐴 =
1) |
16 | 15 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 𝑥) =
(1 /L 𝑥)) |
17 | | 1lgs 26393 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → (1
/L 𝑥) =
1) |
18 | 17 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (1 /L 𝑥) = 1) |
19 | 16, 18 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 𝑥) =
1) |
20 | 19 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ ((𝐴
/L 𝑥)
· (𝐴
/L 0)) = (1 · (𝐴 /L 0))) |
21 | | nn0z 12273 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
22 | 21 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ 𝐴 ∈
ℤ) |
23 | | 0z 12260 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
24 | | lgscl 26364 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → (𝐴
/L 0) ∈ ℤ) |
25 | 22, 23, 24 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) ∈ ℤ) |
26 | 25 | zcnd 12356 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) ∈ ℂ) |
27 | 26 | mulid2d 10924 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (1 · (𝐴
/L 0)) = (𝐴 /L 0)) |
28 | 20, 27 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) = 1)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
29 | | lgscl 26364 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈
ℤ) |
30 | 21, 29 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 𝑥)
∈ ℤ) |
31 | 30 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 𝑥)
∈ ℂ) |
32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 𝑥)
∈ ℂ) |
33 | 32 | mul01d 11104 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ ((𝐴
/L 𝑥)
· 0) = 0) |
34 | 21 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
35 | | lgs0 26363 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) =
if((𝐴↑2) = 1, 1,
0)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 0) = if((𝐴↑2) = 1, 1, 0)) |
37 | | ifnefalse 4468 |
. . . . . . . . . . . 12
⊢ ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) =
0) |
38 | 36, 37 | sylan9eq 2799 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 0) = 0) |
39 | 38 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ ((𝐴
/L 𝑥)
· (𝐴
/L 0)) = ((𝐴 /L 𝑥) · 0)) |
40 | 33, 39, 38 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (𝐴↑2) ≠ 1)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
41 | 28, 40 | pm2.61dane 3031 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
42 | 41 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ ∀𝑥 ∈
ℤ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
43 | 42 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ∀𝑥 ∈
ℤ (𝐴
/L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0))) |
44 | | simp3 1136 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
45 | 3, 43, 44 | rspcdva 3554 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))) |
46 | 45 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) =
((𝐴 /L
𝑁) · (𝐴 /L
0))) |
47 | 21 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
48 | 47, 23, 24 | sylancl 585 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) ∈ ℤ) |
49 | 48 | zcnd 12356 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) ∈ ℂ) |
50 | 49 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) ∈
ℂ) |
51 | | lgscl 26364 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈
ℤ) |
52 | 47, 44, 51 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 𝑁)
∈ ℤ) |
53 | 52 | zcnd 12356 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 𝑁)
∈ ℂ) |
54 | 53 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈
ℂ) |
55 | 50, 54 | mulcomd 10927 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → ((𝐴 /L 0)
· (𝐴
/L 𝑁)) =
((𝐴 /L
𝑁) · (𝐴 /L
0))) |
56 | 46, 55 | eqtr4d 2781 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 0) =
((𝐴 /L 0)
· (𝐴
/L 𝑁))) |
57 | | oveq1 7262 |
. . . . 5
⊢ (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁)) |
58 | 44 | zcnd 12356 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑁 ∈
ℂ) |
59 | 58 | mul02d 11103 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (0 · 𝑁) =
0) |
60 | 57, 59 | sylan9eqr 2801 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0) |
61 | 60 | oveq2d 7271 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0)) |
62 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → 𝑀 = 0) |
63 | 62 | oveq2d 7271 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0)) |
64 | 63 | oveq1d 7270 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁))) |
65 | 56, 61, 64 | 3eqtr4d 2788 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
66 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀)) |
67 | 66 | oveq1d 7270 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
68 | 67 | eqeq2d 2749 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) =
((𝐴 /L
𝑀) · (𝐴 /L
0)))) |
69 | | simp2 1135 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑀 ∈
ℤ) |
70 | 68, 43, 69 | rspcdva 3554 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
71 | 70 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L 0) =
((𝐴 /L
𝑀) · (𝐴 /L
0))) |
72 | | oveq2 7263 |
. . . . 5
⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) |
73 | 69 | zcnd 12356 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑀 ∈
ℂ) |
74 | 73 | mul01d 11104 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝑀 · 0) =
0) |
75 | 72, 74 | sylan9eqr 2801 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0) |
76 | 75 | oveq2d 7271 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0)) |
77 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → 𝑁 = 0) |
78 | 77 | oveq2d 7271 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0)) |
79 | 78 | oveq2d 7271 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0))) |
80 | 71, 76, 79 | 3eqtr4d 2788 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
81 | | lgsdi 26387 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
82 | 21, 81 | syl3anl1 1410 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |
83 | 65, 80, 82 | pm2.61da2ne 3032 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ (𝐴
/L (𝑀
· 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) |