Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. 2
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → 𝑆 ∈ RingOps) |
2 | | foelrn 6964 |
. . . . . . . 8
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑦 ∈ 𝑌) → ∃𝑤 ∈ 𝑋 𝑦 = (𝐹‘𝑤)) |
3 | 2 | ex 412 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → (𝑦 ∈ 𝑌 → ∃𝑤 ∈ 𝑋 𝑦 = (𝐹‘𝑤))) |
4 | | foelrn 6964 |
. . . . . . . 8
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑧 ∈ 𝑌) → ∃𝑥 ∈ 𝑋 𝑧 = (𝐹‘𝑥)) |
5 | 4 | ex 412 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → (𝑧 ∈ 𝑌 → ∃𝑥 ∈ 𝑋 𝑧 = (𝐹‘𝑥))) |
6 | 3, 5 | anim12d 608 |
. . . . . 6
⊢ (𝐹:𝑋–onto→𝑌 → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑌) → (∃𝑤 ∈ 𝑋 𝑦 = (𝐹‘𝑤) ∧ ∃𝑥 ∈ 𝑋 𝑧 = (𝐹‘𝑥)))) |
7 | | reeanv 3292 |
. . . . . 6
⊢
(∃𝑤 ∈
𝑋 ∃𝑥 ∈ 𝑋 (𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) ↔ (∃𝑤 ∈ 𝑋 𝑦 = (𝐹‘𝑤) ∧ ∃𝑥 ∈ 𝑋 𝑧 = (𝐹‘𝑥))) |
8 | 6, 7 | syl6ibr 251 |
. . . . 5
⊢ (𝐹:𝑋–onto→𝑌 → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑌) → ∃𝑤 ∈ 𝑋 ∃𝑥 ∈ 𝑋 (𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)))) |
9 | 8 | ad2antll 725 |
. . . 4
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑌) → ∃𝑤 ∈ 𝑋 ∃𝑥 ∈ 𝑋 (𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)))) |
10 | | crnghomfo.1 |
. . . . . . . . . . . . . 14
⊢ 𝐺 = (1st ‘𝑅) |
11 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘𝑅) = (2nd ‘𝑅) |
12 | | crnghomfo.2 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = ran 𝐺 |
13 | 10, 11, 12 | crngocom 36086 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ 𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑤(2nd ‘𝑅)𝑥) = (𝑥(2nd ‘𝑅)𝑤)) |
14 | 13 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑤(2nd ‘𝑅)𝑥) = (𝑥(2nd ‘𝑅)𝑤)) |
15 | 14 | 3ad2antl1 1183 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑤(2nd ‘𝑅)𝑥) = (𝑥(2nd ‘𝑅)𝑤)) |
16 | 15 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑤(2nd ‘𝑅)𝑥)) = (𝐹‘(𝑥(2nd ‘𝑅)𝑤))) |
17 | | crngorngo 36085 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝑆) = (2nd ‘𝑆) |
19 | 10, 12, 11, 18 | rngohommul 36055 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑤(2nd ‘𝑅)𝑥)) = ((𝐹‘𝑤)(2nd ‘𝑆)(𝐹‘𝑥))) |
20 | 17, 19 | syl3anl1 1410 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑤(2nd ‘𝑅)𝑥)) = ((𝐹‘𝑤)(2nd ‘𝑆)(𝐹‘𝑥))) |
21 | 10, 12, 11, 18 | rngohommul 36055 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘(𝑥(2nd ‘𝑅)𝑤)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
22 | 21 | ancom2s 646 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑥(2nd ‘𝑅)𝑤)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
23 | 17, 22 | syl3anl1 1410 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑥(2nd ‘𝑅)𝑤)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
24 | 16, 20, 23 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑤)(2nd ‘𝑆)(𝐹‘𝑥)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
25 | | oveq12 7264 |
. . . . . . . . . 10
⊢ ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = ((𝐹‘𝑤)(2nd ‘𝑆)(𝐹‘𝑥))) |
26 | | oveq12 7264 |
. . . . . . . . . . 11
⊢ ((𝑧 = (𝐹‘𝑥) ∧ 𝑦 = (𝐹‘𝑤)) → (𝑧(2nd ‘𝑆)𝑦) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
27 | 26 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑧(2nd ‘𝑆)𝑦) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤))) |
28 | 25, 27 | eqeq12d 2754 |
. . . . . . . . 9
⊢ ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → ((𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦) ↔ ((𝐹‘𝑤)(2nd ‘𝑆)(𝐹‘𝑥)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑤)))) |
29 | 24, 28 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦))) |
30 | 29 | ex 412 |
. . . . . . 7
⊢ ((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦)))) |
31 | 30 | 3expa 1116 |
. . . . . 6
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦)))) |
32 | 31 | adantrr 713 |
. . . . 5
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → ((𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦)))) |
33 | 32 | rexlimdvv 3221 |
. . . 4
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → (∃𝑤 ∈ 𝑋 ∃𝑥 ∈ 𝑋 (𝑦 = (𝐹‘𝑤) ∧ 𝑧 = (𝐹‘𝑥)) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦))) |
34 | 9, 33 | syld 47 |
. . 3
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑌) → (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦))) |
35 | 34 | ralrimivv 3113 |
. 2
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ 𝑌 (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦)) |
36 | | crnghomfo.3 |
. . 3
⊢ 𝐽 = (1st ‘𝑆) |
37 | | crnghomfo.4 |
. . 3
⊢ 𝑌 = ran 𝐽 |
38 | 36, 18, 37 | iscrngo2 36082 |
. 2
⊢ (𝑆 ∈ CRingOps ↔ (𝑆 ∈ RingOps ∧
∀𝑦 ∈ 𝑌 ∀𝑧 ∈ 𝑌 (𝑦(2nd ‘𝑆)𝑧) = (𝑧(2nd ‘𝑆)𝑦))) |
39 | 1, 35, 38 | sylanbrc 582 |
1
⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → 𝑆 ∈ CRingOps) |