Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngohomfo Structured version   Visualization version   GIF version

Theorem crngohomfo 37966
Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.)
Hypotheses
Ref Expression
crngohomfo.1 𝐺 = (1st𝑅)
crngohomfo.2 𝑋 = ran 𝐺
crngohomfo.3 𝐽 = (1st𝑆)
crngohomfo.4 𝑌 = ran 𝐽
Assertion
Ref Expression
crngohomfo (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)

Proof of Theorem crngohomfo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ RingOps)
2 foelrn 7141 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑦𝑌) → ∃𝑤𝑋 𝑦 = (𝐹𝑤))
32ex 412 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑦𝑌 → ∃𝑤𝑋 𝑦 = (𝐹𝑤)))
4 foelrn 7141 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑧𝑌) → ∃𝑥𝑋 𝑧 = (𝐹𝑥))
54ex 412 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑧𝑌 → ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
63, 5anim12d 608 . . . . . 6 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥))))
7 reeanv 3235 . . . . . 6 (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) ↔ (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
86, 7imbitrrdi 252 . . . . 5 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
98ad2antll 728 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
10 crngohomfo.1 . . . . . . . . . . . . . 14 𝐺 = (1st𝑅)
11 eqid 2740 . . . . . . . . . . . . . 14 (2nd𝑅) = (2nd𝑅)
12 crngohomfo.2 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
1310, 11, 12crngocom 37961 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑤𝑋𝑥𝑋) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
14133expb 1120 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
15143ad2antl1 1185 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
1615fveq2d 6924 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = (𝐹‘(𝑥(2nd𝑅)𝑤)))
17 crngorngo 37960 . . . . . . . . . . 11 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
18 eqid 2740 . . . . . . . . . . . 12 (2nd𝑆) = (2nd𝑆)
1910, 12, 11, 18rngohommul 37930 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2017, 19syl3anl1 1412 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2110, 12, 11, 18rngohommul 37930 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥𝑋𝑤𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2221ancom2s 649 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2317, 22syl3anl1 1412 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2416, 20, 233eqtr3d 2788 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
25 oveq12 7457 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
26 oveq12 7457 . . . . . . . . . . 11 ((𝑧 = (𝐹𝑥) ∧ 𝑦 = (𝐹𝑤)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2726ancoms 458 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2825, 27eqeq12d 2756 . . . . . . . . 9 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → ((𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦) ↔ ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤))))
2924, 28syl5ibrcom 247 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3029ex 412 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
31303expa 1118 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3231adantrr 716 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3332rexlimdvv 3218 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
349, 33syld 47 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3534ralrimivv 3206 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))
36 crngohomfo.3 . . 3 𝐽 = (1st𝑆)
37 crngohomfo.4 . . 3 𝑌 = ran 𝐽
3836, 18, 37iscrngo2 37957 . 2 (𝑆 ∈ CRingOps ↔ (𝑆 ∈ RingOps ∧ ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
391, 35, 38sylanbrc 582 1 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ran crn 5701  ontowfo 6571  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  RingOpscrngo 37854   RingOpsHom crngohom 37920  CRingOpsccring 37953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-rngo 37855  df-rngohom 37923  df-com2 37950  df-crngo 37954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator