Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngohomfo Structured version   Visualization version   GIF version

Theorem crngohomfo 35901
Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.)
Hypotheses
Ref Expression
crnghomfo.1 𝐺 = (1st𝑅)
crnghomfo.2 𝑋 = ran 𝐺
crnghomfo.3 𝐽 = (1st𝑆)
crnghomfo.4 𝑌 = ran 𝐽
Assertion
Ref Expression
crngohomfo (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)

Proof of Theorem crngohomfo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 769 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ RingOps)
2 foelrn 6925 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑦𝑌) → ∃𝑤𝑋 𝑦 = (𝐹𝑤))
32ex 416 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑦𝑌 → ∃𝑤𝑋 𝑦 = (𝐹𝑤)))
4 foelrn 6925 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑧𝑌) → ∃𝑥𝑋 𝑧 = (𝐹𝑥))
54ex 416 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑧𝑌 → ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
63, 5anim12d 612 . . . . . 6 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥))))
7 reeanv 3279 . . . . . 6 (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) ↔ (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
86, 7syl6ibr 255 . . . . 5 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
98ad2antll 729 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
10 crnghomfo.1 . . . . . . . . . . . . . 14 𝐺 = (1st𝑅)
11 eqid 2737 . . . . . . . . . . . . . 14 (2nd𝑅) = (2nd𝑅)
12 crnghomfo.2 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
1310, 11, 12crngocom 35896 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑤𝑋𝑥𝑋) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
14133expb 1122 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
15143ad2antl1 1187 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
1615fveq2d 6721 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = (𝐹‘(𝑥(2nd𝑅)𝑤)))
17 crngorngo 35895 . . . . . . . . . . 11 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
18 eqid 2737 . . . . . . . . . . . 12 (2nd𝑆) = (2nd𝑆)
1910, 12, 11, 18rngohommul 35865 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2017, 19syl3anl1 1414 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2110, 12, 11, 18rngohommul 35865 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥𝑋𝑤𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2221ancom2s 650 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2317, 22syl3anl1 1414 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2416, 20, 233eqtr3d 2785 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
25 oveq12 7222 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
26 oveq12 7222 . . . . . . . . . . 11 ((𝑧 = (𝐹𝑥) ∧ 𝑦 = (𝐹𝑤)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2726ancoms 462 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2825, 27eqeq12d 2753 . . . . . . . . 9 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → ((𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦) ↔ ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤))))
2924, 28syl5ibrcom 250 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3029ex 416 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
31303expa 1120 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3231adantrr 717 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3332rexlimdvv 3212 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
349, 33syld 47 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3534ralrimivv 3111 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))
36 crnghomfo.3 . . 3 𝐽 = (1st𝑆)
37 crnghomfo.4 . . 3 𝑌 = ran 𝐽
3836, 18, 37iscrngo2 35892 . 2 (𝑆 ∈ CRingOps ↔ (𝑆 ∈ RingOps ∧ ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
391, 35, 38sylanbrc 586 1 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  ran crn 5552  ontowfo 6378  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  RingOpscrngo 35789   RngHom crnghom 35855  CRingOpsccring 35888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fo 6386  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-rngo 35790  df-rngohom 35858  df-com2 35885  df-crngo 35889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator