Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngohomfo Structured version   Visualization version   GIF version

Theorem crngohomfo 35165
Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.)
Hypotheses
Ref Expression
crnghomfo.1 𝐺 = (1st𝑅)
crnghomfo.2 𝑋 = ran 𝐺
crnghomfo.3 𝐽 = (1st𝑆)
crnghomfo.4 𝑌 = ran 𝐽
Assertion
Ref Expression
crngohomfo (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)

Proof of Theorem crngohomfo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ RingOps)
2 foelrn 6864 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑦𝑌) → ∃𝑤𝑋 𝑦 = (𝐹𝑤))
32ex 413 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑦𝑌 → ∃𝑤𝑋 𝑦 = (𝐹𝑤)))
4 foelrn 6864 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑧𝑌) → ∃𝑥𝑋 𝑧 = (𝐹𝑥))
54ex 413 . . . . . . 7 (𝐹:𝑋onto𝑌 → (𝑧𝑌 → ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
63, 5anim12d 608 . . . . . 6 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥))))
7 reeanv 3365 . . . . . 6 (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) ↔ (∃𝑤𝑋 𝑦 = (𝐹𝑤) ∧ ∃𝑥𝑋 𝑧 = (𝐹𝑥)))
86, 7syl6ibr 253 . . . . 5 (𝐹:𝑋onto𝑌 → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
98ad2antll 725 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → ∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥))))
10 crnghomfo.1 . . . . . . . . . . . . . 14 𝐺 = (1st𝑅)
11 eqid 2818 . . . . . . . . . . . . . 14 (2nd𝑅) = (2nd𝑅)
12 crnghomfo.2 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
1310, 11, 12crngocom 35160 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑤𝑋𝑥𝑋) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
14133expb 1112 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
15143ad2antl1 1177 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝑤(2nd𝑅)𝑥) = (𝑥(2nd𝑅)𝑤))
1615fveq2d 6667 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = (𝐹‘(𝑥(2nd𝑅)𝑤)))
17 crngorngo 35159 . . . . . . . . . . 11 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
18 eqid 2818 . . . . . . . . . . . 12 (2nd𝑆) = (2nd𝑆)
1910, 12, 11, 18rngohommul 35129 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2017, 19syl3anl1 1404 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑤(2nd𝑅)𝑥)) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
2110, 12, 11, 18rngohommul 35129 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥𝑋𝑤𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2221ancom2s 646 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2317, 22syl3anl1 1404 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → (𝐹‘(𝑥(2nd𝑅)𝑤)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2416, 20, 233eqtr3d 2861 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
25 oveq12 7154 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)))
26 oveq12 7154 . . . . . . . . . . 11 ((𝑧 = (𝐹𝑥) ∧ 𝑦 = (𝐹𝑤)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2726ancoms 459 . . . . . . . . . 10 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑧(2nd𝑆)𝑦) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤)))
2825, 27eqeq12d 2834 . . . . . . . . 9 ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → ((𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦) ↔ ((𝐹𝑤)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑤))))
2924, 28syl5ibrcom 248 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑤𝑋𝑥𝑋)) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3029ex 413 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
31303expa 1110 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3231adantrr 713 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑤𝑋𝑥𝑋) → ((𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))))
3332rexlimdvv 3290 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → (∃𝑤𝑋𝑥𝑋 (𝑦 = (𝐹𝑤) ∧ 𝑧 = (𝐹𝑥)) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
349, 33syld 47 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ((𝑦𝑌𝑧𝑌) → (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
3534ralrimivv 3187 . 2 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦))
36 crnghomfo.3 . . 3 𝐽 = (1st𝑆)
37 crnghomfo.4 . . 3 𝑌 = ran 𝐽
3836, 18, 37iscrngo2 35156 . 2 (𝑆 ∈ CRingOps ↔ (𝑆 ∈ RingOps ∧ ∀𝑦𝑌𝑧𝑌 (𝑦(2nd𝑆)𝑧) = (𝑧(2nd𝑆)𝑦)))
391, 35, 38sylanbrc 583 1 (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋onto𝑌)) → 𝑆 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  ran crn 5549  ontowfo 6346  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  RingOpscrngo 35053   RngHom crnghom 35119  CRingOpsccring 35152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-map 8397  df-rngo 35054  df-rngohom 35122  df-com2 35149  df-crngo 35153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator