Proof of Theorem dif1enlem
| Step | Hyp | Ref
| Expression |
| 1 | | sucidg 6440 |
. . . . . 6
⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) |
| 2 | | dff1o3 6829 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 ↔ (𝐹:𝐴–onto→suc 𝑀 ∧ Fun ◡𝐹)) |
| 3 | 2 | simprbi 496 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → Fun ◡𝐹) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → Fun ◡𝐹) |
| 5 | | f1ofo 6830 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹:𝐴–onto→suc 𝑀) |
| 6 | | f1ofn 6824 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹 Fn 𝐴) |
| 7 | | fnresdm 6662 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| 8 | | foeq1 6791 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐴) = 𝐹 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
| 10 | 5, 9 | mpbird 257 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
| 12 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴) |
| 13 | | f1ocnvdm 7283 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝐹‘𝑀) ∈ 𝐴) |
| 14 | | f1ocnvfv2 7275 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) = 𝑀) |
| 15 | | snidg 4641 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ suc 𝑀 → 𝑀 ∈ {𝑀}) |
| 16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀}) |
| 17 | 14, 16 | eqeltrd 2835 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) |
| 18 | | fressnfv 7155 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴) → ((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ↔ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀})) |
| 19 | 18 | biimp3ar 1472 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴 ∧ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
| 20 | 12, 13, 17, 19 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
| 21 | | disjsn 4692 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ ¬ (◡𝐹‘𝑀) ∈ 𝐴) |
| 22 | 21 | con2bii 357 |
. . . . . . . . . . 11
⊢ ((◡𝐹‘𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
| 23 | 13, 22 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
| 24 | | fnresdisj 6663 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
| 25 | 6, 24 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
| 26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
| 27 | 23, 26 | mtbid 324 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅) |
| 28 | 27 | neqned 2940 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) |
| 29 | | foconst 6810 |
. . . . . . . 8
⊢ (((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
| 30 | 20, 28, 29 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
| 31 | | resdif 6844 |
. . . . . . 7
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
| 32 | 4, 11, 30, 31 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
| 33 | 1, 32 | sylan2 593 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
| 34 | | eloni 6367 |
. . . . . . . 8
⊢ (𝑀 ∈ On → Ord 𝑀) |
| 35 | | orddif 6455 |
. . . . . . . 8
⊢ (Ord
𝑀 → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ On → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
| 37 | 36 | f1oeq3d 6820 |
. . . . . 6
⊢ (𝑀 ∈ On → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
| 38 | 37 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
| 39 | 33, 38 | mpbird 257 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
| 40 | 39 | ancoms 458 |
. . 3
⊢ ((𝑀 ∈ On ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
| 41 | 40 | 3ad2antl3 1188 |
. 2
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
| 42 | | difexg 5304 |
. . 3
⊢ (𝐴 ∈ 𝑊 → (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V) |
| 43 | | resexg 6019 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V) |
| 44 | | f1oen4g 8984 |
. . . 4
⊢ ((((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V ∧ (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
| 45 | 43, 44 | syl3anl1 1414 |
. . 3
⊢ (((𝐹 ∈ 𝑉 ∧ (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
| 46 | 42, 45 | syl3anl2 1415 |
. 2
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
| 47 | 41, 46 | syldan 591 |
1
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |