MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enlem Structured version   Visualization version   GIF version

Theorem dif1enlem 9073
Description: Lemma for rexdif1en 9074 and dif1en 9075. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7671. (Revised by BTernaryTau, 5-Jan-2025.)
Assertion
Ref Expression
dif1enlem (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)

Proof of Theorem dif1enlem
StepHypRef Expression
1 sucidg 6390 . . . . . 6 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
2 dff1o3 6770 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 ↔ (𝐹:𝐴onto→suc 𝑀 ∧ Fun 𝐹))
32simprbi 496 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → Fun 𝐹)
43adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → Fun 𝐹)
5 f1ofo 6771 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀𝐹:𝐴onto→suc 𝑀)
6 f1ofn 6765 . . . . . . . . . 10 (𝐹:𝐴1-1-onto→suc 𝑀𝐹 Fn 𝐴)
7 fnresdm 6601 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
8 foeq1 6732 . . . . . . . . . 10 ((𝐹𝐴) = 𝐹 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
96, 7, 83syl 18 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
105, 9mpbird 257 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → (𝐹𝐴):𝐴onto→suc 𝑀)
1110adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝐴):𝐴onto→suc 𝑀)
126adantr 480 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴)
13 f1ocnvdm 7222 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝑀) ∈ 𝐴)
14 f1ocnvfv2 7214 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) = 𝑀)
15 snidg 4612 . . . . . . . . . . 11 (𝑀 ∈ suc 𝑀𝑀 ∈ {𝑀})
1615adantl 481 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀})
1714, 16eqeltrd 2828 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) ∈ {𝑀})
18 fressnfv 7094 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴) → ((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ↔ (𝐹‘(𝐹𝑀)) ∈ {𝑀}))
1918biimp3ar 1472 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴 ∧ (𝐹‘(𝐹𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
2012, 13, 17, 19syl3anc 1373 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
21 disjsn 4663 . . . . . . . . . . . 12 ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ ¬ (𝐹𝑀) ∈ 𝐴)
2221con2bii 357 . . . . . . . . . . 11 ((𝐹𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
2313, 22sylib 218 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
24 fnresdisj 6602 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
256, 24syl 17 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2625adantr 480 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2723, 26mtbid 324 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(𝐹𝑀)}) = ∅)
2827neqned 2932 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅)
29 foconst 6751 . . . . . . . 8 (((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
3020, 28, 29syl2anc 584 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
31 resdif 6785 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto→suc 𝑀 ∧ (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
324, 11, 30, 31syl3anc 1373 . . . . . 6 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
331, 32sylan2 593 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
34 eloni 6317 . . . . . . . 8 (𝑀 ∈ On → Ord 𝑀)
35 orddif 6405 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
3634, 35syl 17 . . . . . . 7 (𝑀 ∈ On → 𝑀 = (suc 𝑀 ∖ {𝑀}))
3736f1oeq3d 6761 . . . . . 6 (𝑀 ∈ On → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3837adantl 481 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3933, 38mpbird 257 . . . 4 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
4039ancoms 458 . . 3 ((𝑀 ∈ On ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
41403ad2antl3 1188 . 2 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
42 difexg 5268 . . 3 (𝐴𝑊 → (𝐴 ∖ {(𝐹𝑀)}) ∈ V)
43 resexg 5978 . . . 4 (𝐹𝑉 → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V)
44 f1oen4g 8890 . . . 4 ((((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V ∧ (𝐴 ∖ {(𝐹𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4543, 44syl3anl1 1414 . . 3 (((𝐹𝑉 ∧ (𝐴 ∖ {(𝐹𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4642, 45syl3anl2 1415 . 2 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4741, 46syldan 591 1 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  cin 3902  c0 4284  {csn 4577   class class class wbr 5092  ccnv 5618  cres 5621  Ord word 6306  Oncon0 6307  suc csuc 6309  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-en 8873
This theorem is referenced by:  rexdif1en  9074  dif1en  9075
  Copyright terms: Public domain W3C validator