Proof of Theorem dif1enlem
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → 𝐹 ∈ 𝑉) |
2 | | sucidg 6329 |
. . . . . 6
⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) |
3 | | dff1o3 6706 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 ↔ (𝐹:𝐴–onto→suc 𝑀 ∧ Fun ◡𝐹)) |
4 | 3 | simprbi 496 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → Fun ◡𝐹) |
5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → Fun ◡𝐹) |
6 | | f1ofo 6707 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹:𝐴–onto→suc 𝑀) |
7 | | f1ofn 6701 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹 Fn 𝐴) |
8 | | fnresdm 6535 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
9 | | foeq1 6668 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐴) = 𝐹 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
11 | 6, 10 | mpbird 256 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
13 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴) |
14 | | f1ocnvdm 7137 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝐹‘𝑀) ∈ 𝐴) |
15 | | f1ocnvfv2 7130 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) = 𝑀) |
16 | | snidg 4592 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ suc 𝑀 → 𝑀 ∈ {𝑀}) |
17 | 16 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀}) |
18 | 15, 17 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) |
19 | | fressnfv 7014 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴) → ((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ↔ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀})) |
20 | 19 | biimp3ar 1468 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴 ∧ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
21 | 13, 14, 18, 20 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
22 | | disjsn 4644 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ ¬ (◡𝐹‘𝑀) ∈ 𝐴) |
23 | 22 | con2bii 357 |
. . . . . . . . . . 11
⊢ ((◡𝐹‘𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
24 | 14, 23 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
25 | | fnresdisj 6536 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
26 | 7, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
28 | 24, 27 | mtbid 323 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅) |
29 | 28 | neqned 2949 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) |
30 | | foconst 6687 |
. . . . . . . 8
⊢ (((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
31 | 21, 29, 30 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
32 | | resdif 6720 |
. . . . . . 7
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
33 | 5, 12, 31, 32 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
34 | 2, 33 | sylan2 592 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
35 | | nnord 7695 |
. . . . . . . 8
⊢ (𝑀 ∈ ω → Ord 𝑀) |
36 | | orddif 6344 |
. . . . . . . 8
⊢ (Ord
𝑀 → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
37 | 35, 36 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
38 | 37 | f1oeq3d 6697 |
. . . . . 6
⊢ (𝑀 ∈ ω → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
39 | 38 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ ω) → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
40 | 34, 39 | mpbird 256 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
41 | 40 | ancoms 458 |
. . 3
⊢ ((𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
42 | 41 | 3adant1 1128 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
43 | | resexg 5926 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V) |
44 | | f1oen3g 8709 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
45 | 43, 44 | sylan 579 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
46 | 1, 42, 45 | syl2anc 583 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |