MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enlem Structured version   Visualization version   GIF version

Theorem dif1enlem 8736
Description: Lemma for rexdif1en 8737 and dif1en 8738. (Contributed by BTernaryTau, 18-Aug-2024.)
Assertion
Ref Expression
dif1enlem ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)

Proof of Theorem dif1enlem
StepHypRef Expression
1 simp1 1133 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → 𝐹𝑉)
2 sucidg 6251 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
3 dff1o3 6612 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 ↔ (𝐹:𝐴onto→suc 𝑀 ∧ Fun 𝐹))
43simprbi 500 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → Fun 𝐹)
54adantr 484 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → Fun 𝐹)
6 f1ofo 6613 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀𝐹:𝐴onto→suc 𝑀)
7 f1ofn 6607 . . . . . . . . . 10 (𝐹:𝐴1-1-onto→suc 𝑀𝐹 Fn 𝐴)
8 fnresdm 6453 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
9 foeq1 6576 . . . . . . . . . 10 ((𝐹𝐴) = 𝐹 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
107, 8, 93syl 18 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
116, 10mpbird 260 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → (𝐹𝐴):𝐴onto→suc 𝑀)
1211adantr 484 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝐴):𝐴onto→suc 𝑀)
137adantr 484 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴)
14 f1ocnvdm 7038 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝑀) ∈ 𝐴)
15 f1ocnvfv2 7031 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) = 𝑀)
16 snidg 4559 . . . . . . . . . . 11 (𝑀 ∈ suc 𝑀𝑀 ∈ {𝑀})
1716adantl 485 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀})
1815, 17eqeltrd 2852 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) ∈ {𝑀})
19 fressnfv 6918 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴) → ((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ↔ (𝐹‘(𝐹𝑀)) ∈ {𝑀}))
2019biimp3ar 1467 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴 ∧ (𝐹‘(𝐹𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
2113, 14, 18, 20syl3anc 1368 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
22 disjsn 4607 . . . . . . . . . . . 12 ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ ¬ (𝐹𝑀) ∈ 𝐴)
2322con2bii 361 . . . . . . . . . . 11 ((𝐹𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
2414, 23sylib 221 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
25 fnresdisj 6454 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
267, 25syl 17 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2726adantr 484 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2824, 27mtbid 327 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(𝐹𝑀)}) = ∅)
2928neqned 2958 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅)
30 foconst 6593 . . . . . . . 8 (((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
3121, 29, 30syl2anc 587 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
32 resdif 6626 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto→suc 𝑀 ∧ (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
335, 12, 31, 32syl3anc 1368 . . . . . 6 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
342, 33sylan2 595 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
35 nnord 7592 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
36 orddif 6266 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
3735, 36syl 17 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
3837f1oeq3d 6603 . . . . . 6 (𝑀 ∈ ω → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3938adantl 485 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
4034, 39mpbird 260 . . . 4 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
4140ancoms 462 . . 3 ((𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
42413adant1 1127 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
43 resexg 5873 . . 3 (𝐹𝑉 → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V)
44 f1oen3g 8548 . . 3 (((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4543, 44sylan 583 . 2 ((𝐹𝑉 ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
461, 42, 45syl2anc 587 1 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409  cdif 3857  cin 3859  c0 4227  {csn 4525   class class class wbr 5035  ccnv 5526  cres 5529  Ord word 6172  suc csuc 6175  Fun wfun 6333   Fn wfn 6334  wf 6335  ontowfo 6337  1-1-ontowf1o 6338  cfv 6339  ωcom 7584  cen 8529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7585  df-en 8533
This theorem is referenced by:  rexdif1en  8737  dif1en  8738
  Copyright terms: Public domain W3C validator