MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enlem Structured version   Visualization version   GIF version

Theorem dif1enlem 8771
Description: Lemma for rexdif1en 8772 and dif1en 8773. (Contributed by BTernaryTau, 18-Aug-2024.)
Assertion
Ref Expression
dif1enlem ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)

Proof of Theorem dif1enlem
StepHypRef Expression
1 simp1 1137 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → 𝐹𝑉)
2 sucidg 6260 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
3 dff1o3 6636 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 ↔ (𝐹:𝐴onto→suc 𝑀 ∧ Fun 𝐹))
43simprbi 500 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → Fun 𝐹)
54adantr 484 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → Fun 𝐹)
6 f1ofo 6637 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀𝐹:𝐴onto→suc 𝑀)
7 f1ofn 6631 . . . . . . . . . 10 (𝐹:𝐴1-1-onto→suc 𝑀𝐹 Fn 𝐴)
8 fnresdm 6465 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
9 foeq1 6598 . . . . . . . . . 10 ((𝐹𝐴) = 𝐹 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
107, 8, 93syl 18 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
116, 10mpbird 260 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → (𝐹𝐴):𝐴onto→suc 𝑀)
1211adantr 484 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝐴):𝐴onto→suc 𝑀)
137adantr 484 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴)
14 f1ocnvdm 7064 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝑀) ∈ 𝐴)
15 f1ocnvfv2 7057 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) = 𝑀)
16 snidg 4560 . . . . . . . . . . 11 (𝑀 ∈ suc 𝑀𝑀 ∈ {𝑀})
1716adantl 485 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀})
1815, 17eqeltrd 2834 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) ∈ {𝑀})
19 fressnfv 6944 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴) → ((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ↔ (𝐹‘(𝐹𝑀)) ∈ {𝑀}))
2019biimp3ar 1471 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴 ∧ (𝐹‘(𝐹𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
2113, 14, 18, 20syl3anc 1372 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
22 disjsn 4612 . . . . . . . . . . . 12 ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ ¬ (𝐹𝑀) ∈ 𝐴)
2322con2bii 361 . . . . . . . . . . 11 ((𝐹𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
2414, 23sylib 221 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
25 fnresdisj 6466 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
267, 25syl 17 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2726adantr 484 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2824, 27mtbid 327 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(𝐹𝑀)}) = ∅)
2928neqned 2942 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅)
30 foconst 6617 . . . . . . . 8 (((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
3121, 29, 30syl2anc 587 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
32 resdif 6650 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto→suc 𝑀 ∧ (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
335, 12, 31, 32syl3anc 1372 . . . . . 6 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
342, 33sylan2 596 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
35 nnord 7619 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
36 orddif 6275 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
3735, 36syl 17 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
3837f1oeq3d 6627 . . . . . 6 (𝑀 ∈ ω → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3938adantl 485 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
4034, 39mpbird 260 . . . 4 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ ω) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
4140ancoms 462 . . 3 ((𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
42413adant1 1131 . 2 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
43 resexg 5881 . . 3 (𝐹𝑉 → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V)
44 f1oen3g 8583 . . 3 (((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4543, 44sylan 583 . 2 ((𝐹𝑉 ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
461, 42, 45syl2anc 587 1 ((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  Vcvv 3400  cdif 3850  cin 3852  c0 4221  {csn 4526   class class class wbr 5040  ccnv 5534  cres 5537  Ord word 6181  suc csuc 6184  Fun wfun 6343   Fn wfn 6344  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  ωcom 7611  cen 8564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-ord 6185  df-on 6186  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7612  df-en 8568
This theorem is referenced by:  rexdif1en  8772  dif1en  8773
  Copyright terms: Public domain W3C validator