MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enlem Structured version   Visualization version   GIF version

Theorem dif1enlem 9222
Description: Lemma for rexdif1en 9224 and dif1en 9226. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7770. (Revised by BTernaryTau, 5-Jan-2025.)
Assertion
Ref Expression
dif1enlem (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)

Proof of Theorem dif1enlem
StepHypRef Expression
1 sucidg 6476 . . . . . 6 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
2 dff1o3 6868 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 ↔ (𝐹:𝐴onto→suc 𝑀 ∧ Fun 𝐹))
32simprbi 496 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → Fun 𝐹)
43adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → Fun 𝐹)
5 f1ofo 6869 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀𝐹:𝐴onto→suc 𝑀)
6 f1ofn 6863 . . . . . . . . . 10 (𝐹:𝐴1-1-onto→suc 𝑀𝐹 Fn 𝐴)
7 fnresdm 6699 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
8 foeq1 6830 . . . . . . . . . 10 ((𝐹𝐴) = 𝐹 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
96, 7, 83syl 18 . . . . . . . . 9 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐹𝐴):𝐴onto→suc 𝑀𝐹:𝐴onto→suc 𝑀))
105, 9mpbird 257 . . . . . . . 8 (𝐹:𝐴1-1-onto→suc 𝑀 → (𝐹𝐴):𝐴onto→suc 𝑀)
1110adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝐴):𝐴onto→suc 𝑀)
126adantr 480 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴)
13 f1ocnvdm 7321 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹𝑀) ∈ 𝐴)
14 f1ocnvfv2 7313 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) = 𝑀)
15 snidg 4682 . . . . . . . . . . 11 (𝑀 ∈ suc 𝑀𝑀 ∈ {𝑀})
1615adantl 481 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀})
1714, 16eqeltrd 2844 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹‘(𝐹𝑀)) ∈ {𝑀})
18 fressnfv 7194 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴) → ((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ↔ (𝐹‘(𝐹𝑀)) ∈ {𝑀}))
1918biimp3ar 1470 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝐹𝑀) ∈ 𝐴 ∧ (𝐹‘(𝐹𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
2012, 13, 17, 19syl3anc 1371 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀})
21 disjsn 4736 . . . . . . . . . . . 12 ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ ¬ (𝐹𝑀) ∈ 𝐴)
2221con2bii 357 . . . . . . . . . . 11 ((𝐹𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
2313, 22sylib 218 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(𝐹𝑀)}) = ∅)
24 fnresdisj 6700 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
256, 24syl 17 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2625adantr 480 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(𝐹𝑀)}) = ∅ ↔ (𝐹 ↾ {(𝐹𝑀)}) = ∅))
2723, 26mtbid 324 . . . . . . . . 9 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(𝐹𝑀)}) = ∅)
2827neqned 2953 . . . . . . . 8 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅)
29 foconst 6849 . . . . . . . 8 (((𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(𝐹𝑀)}) ≠ ∅) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
3020, 28, 29syl2anc 583 . . . . . . 7 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀})
31 resdif 6883 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto→suc 𝑀 ∧ (𝐹 ↾ {(𝐹𝑀)}):{(𝐹𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
324, 11, 30, 31syl3anc 1371 . . . . . 6 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
331, 32sylan2 592 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀}))
34 eloni 6405 . . . . . . . 8 (𝑀 ∈ On → Ord 𝑀)
35 orddif 6491 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
3634, 35syl 17 . . . . . . 7 (𝑀 ∈ On → 𝑀 = (suc 𝑀 ∖ {𝑀}))
3736f1oeq3d 6859 . . . . . 6 (𝑀 ∈ On → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3837adantl 481 . . . . 5 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → ((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto→(suc 𝑀 ∖ {𝑀})))
3933, 38mpbird 257 . . . 4 ((𝐹:𝐴1-1-onto→suc 𝑀𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
4039ancoms 458 . . 3 ((𝑀 ∈ On ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
41403ad2antl3 1187 . 2 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀)
42 difexg 5347 . . 3 (𝐴𝑊 → (𝐴 ∖ {(𝐹𝑀)}) ∈ V)
43 resexg 6056 . . . 4 (𝐹𝑉 → (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V)
44 f1oen4g 9024 . . . 4 ((((𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})) ∈ V ∧ (𝐴 ∖ {(𝐹𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4543, 44syl3anl1 1412 . . 3 (((𝐹𝑉 ∧ (𝐴 ∖ {(𝐹𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4642, 45syl3anl2 1413 . 2 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(𝐹𝑀)})):(𝐴 ∖ {(𝐹𝑀)})–1-1-onto𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
4741, 46syldan 590 1 (((𝐹𝑉𝐴𝑊𝑀 ∈ On) ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  cin 3975  c0 4352  {csn 4648   class class class wbr 5166  ccnv 5699  cres 5702  Ord word 6394  Oncon0 6395  suc csuc 6397  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-en 9004
This theorem is referenced by:  rexdif1en  9224  dif1en  9226
  Copyright terms: Public domain W3C validator