Step | Hyp | Ref
| Expression |
1 | | sucidg 6442 |
. . . . . 6
⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) |
2 | | dff1o3 6836 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 ↔ (𝐹:𝐴–onto→suc 𝑀 ∧ Fun ◡𝐹)) |
3 | 2 | simprbi 497 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → Fun ◡𝐹) |
4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → Fun ◡𝐹) |
5 | | f1ofo 6837 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹:𝐴–onto→suc 𝑀) |
6 | | f1ofn 6831 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → 𝐹 Fn 𝐴) |
7 | | fnresdm 6666 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
8 | | foeq1 6798 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐴) = 𝐹 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ↔ 𝐹:𝐴–onto→suc 𝑀)) |
10 | 5, 9 | mpbird 256 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
11 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀) |
12 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝐹 Fn 𝐴) |
13 | | f1ocnvdm 7279 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝐹‘𝑀) ∈ 𝐴) |
14 | | f1ocnvfv2 7271 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) = 𝑀) |
15 | | snidg 4661 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ suc 𝑀 → 𝑀 ∈ {𝑀}) |
16 | 15 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 𝑀 ∈ {𝑀}) |
17 | 14, 16 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) |
18 | | fressnfv 7154 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴) → ((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ↔ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀})) |
19 | 18 | biimp3ar 1470 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐹‘𝑀) ∈ 𝐴 ∧ (𝐹‘(◡𝐹‘𝑀)) ∈ {𝑀}) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
20 | 12, 13, 17, 19 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀}) |
21 | | disjsn 4714 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ ¬ (◡𝐹‘𝑀) ∈ 𝐴) |
22 | 21 | con2bii 357 |
. . . . . . . . . . 11
⊢ ((◡𝐹‘𝑀) ∈ 𝐴 ↔ ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
23 | 13, 22 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅) |
24 | | fnresdisj 6667 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
25 | 6, 24 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→suc
𝑀 → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ((𝐴 ∩ {(◡𝐹‘𝑀)}) = ∅ ↔ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅)) |
27 | 23, 26 | mtbid 323 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ¬ (𝐹 ↾ {(◡𝐹‘𝑀)}) = ∅) |
28 | 27 | neqned 2947 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) |
29 | | foconst 6817 |
. . . . . . . 8
⊢ (((𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}⟶{𝑀} ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}) ≠ ∅) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
30 | 20, 28, 29 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) |
31 | | resdif 6851 |
. . . . . . 7
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→suc 𝑀 ∧ (𝐹 ↾ {(◡𝐹‘𝑀)}):{(◡𝐹‘𝑀)}–onto→{𝑀}) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
32 | 4, 11, 30, 31 | syl3anc 1371 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
33 | 1, 32 | sylan2 593 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀})) |
34 | | eloni 6371 |
. . . . . . . 8
⊢ (𝑀 ∈ On → Ord 𝑀) |
35 | | orddif 6457 |
. . . . . . . 8
⊢ (Ord
𝑀 → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ On → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
37 | 36 | f1oeq3d 6827 |
. . . . . 6
⊢ (𝑀 ∈ On → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
38 | 37 | adantl 482 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → ((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀 ↔ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→(suc
𝑀 ∖ {𝑀}))) |
39 | 33, 38 | mpbird 256 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ On) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
40 | 39 | ancoms 459 |
. . 3
⊢ ((𝑀 ∈ On ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
41 | 40 | 3ad2antl3 1187 |
. 2
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) |
42 | | difexg 5326 |
. . 3
⊢ (𝐴 ∈ 𝑊 → (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V) |
43 | | resexg 6025 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V) |
44 | | f1oen4g 8956 |
. . . 4
⊢ ((((𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})) ∈ V ∧ (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
45 | 43, 44 | syl3anl1 1412 |
. . 3
⊢ (((𝐹 ∈ 𝑉 ∧ (𝐴 ∖ {(◡𝐹‘𝑀)}) ∈ V ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
46 | 42, 45 | syl3anl2 1413 |
. 2
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ (𝐹 ↾ (𝐴 ∖ {(◡𝐹‘𝑀)})):(𝐴 ∖ {(◡𝐹‘𝑀)})–1-1-onto→𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |
47 | 41, 46 | syldan 591 |
1
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc
𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) |