MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzcl Structured version   Visualization version   GIF version

Theorem suprzcl 12695
Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
suprzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem suprzcl
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 12617 . . . . . 6 ℤ ⊆ ℝ
2 sstr 4003 . . . . . 6 ((𝐴 ⊆ ℤ ∧ ℤ ⊆ ℝ) → 𝐴 ⊆ ℝ)
31, 2mpan2 691 . . . . 5 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
4 suprcl 12225 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
53, 4syl3an1 1162 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
65ltm1d 12197 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ))
7 peano2rem 11573 . . . . . 6 (sup(𝐴, ℝ, < ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
84, 7syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
9 suprlub 12229 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐴, ℝ, < ) − 1) ∈ ℝ) → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
108, 9mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
113, 10syl3an1 1162 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
126, 11mpbid 232 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)
13 simpl1 1190 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ)
1413sselda 3994 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
151, 14sselid 3992 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
165adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1716adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
18 simprl 771 . . . . . . . . . . . 12 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧𝐴)
1913, 18sseldd 3995 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ)
20 zre 12614 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ)
22 peano2re 11431 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
2321, 22syl 17 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ)
2423adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑧 + 1) ∈ ℝ)
25 suprub 12226 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
263, 25syl3anl1 1411 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
2726adantlr 715 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
28 simprr 773 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧)
29 1red 11259 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈ ℝ)
3016, 29, 21ltsubaddd 11856 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1) < 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1)))
3128, 30mpbid 232 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3231adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3315, 17, 24, 27, 32lelttrd 11416 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 < (𝑧 + 1))
3419adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑧 ∈ ℤ)
35 zleltp1 12665 . . . . . . . 8 ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3614, 34, 35syl2anc 584 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3733, 36mpbird 257 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝑧)
3837ralrimiva 3143 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤𝐴 𝑤𝑧)
39 suprleub 12231 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
403, 39syl3anl1 1411 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
4121, 40syldan 591 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
4238, 41mpbird 257 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧)
43 suprub 12226 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ, < ))
443, 43syl3anl1 1411 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ, < ))
4544adantrr 717 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < ))
4616, 21letri3d 11400 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧𝑧 ≤ sup(𝐴, ℝ, < ))))
4742, 45, 46mpbir2and 713 . . 3 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧)
4847, 18eqeltrd 2838 . 2 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
4912, 48rexlimddv 3158 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  wss 3962  c0 4338   class class class wbr 5147  (class class class)co 7430  supcsup 9477  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  cz 12610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611
This theorem is referenced by:  suprfinzcl  12729  rpnnen1lem2  13016  rpnnen1lem1  13017  pgpssslw  19646  plyeq0lem  26263  fourierdlem20  46082  fourierdlem64  46125
  Copyright terms: Public domain W3C validator