| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9090 domsdomtrfi 9106 nppcan2 11387 nnncan 11391 nnncan2 11393 div11 11799 subdivcomb2 11812 ltdivmul 11992 ledivmul 11993 ltdiv23 12008 lediv23 12009 xrmaxlt 13075 xrltmin 13076 xrmaxle 13077 xrlemin 13078 pfxtrcfv 14595 pfxco 14740 dvdssub2 16207 dvdsgcdb 16451 lcmdvdsb 16519 vdwapun 16881 poslubdg 18313 ipodrsfi 18440 mulginvcom 19007 matinvgcell 22345 mdetrsca2 22514 mdetrlin2 22517 mdetunilem5 22526 decpmatmul 22682 islp3 23056 bddibl 25763 nvpi 30639 nvabs 30644 nmmulg 33971 fineqvnttrclselem2 35134 fineqvnttrclselem3 35135 lineid 36117 oplecon1b 39240 opltcon1b 39244 oldmm2 39257 oldmj2 39261 cmt3N 39290 2llnneN 39448 cvrexchlem 39458 pmod2iN 39888 polcon2N 39958 paddatclN 39988 osumcllem3N 39997 ltrnval1 40173 cdleme48fv 40538 cdlemg33b 40746 trlcolem 40765 cdlemh 40856 cdlemi1 40857 cdlemi2 40858 cdlemi 40859 cdlemk4 40873 cdlemk19u1 41008 cdlemn3 41236 hgmapfval 41925 pell14qrgap 42908 mnringmulrcld 44261 stoweidlem22 46060 stoweidlem26 46064 sigarexp 46897 lindszr 48501 fv2arycl 48680 |
| Copyright terms: Public domain | W3C validator |