| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9156 domsdomtrfi 9172 nppcan2 11460 nnncan 11464 nnncan2 11466 div11 11872 subdivcomb2 11885 ltdivmul 12065 ledivmul 12066 ltdiv23 12081 lediv23 12082 xrmaxlt 13148 xrltmin 13149 xrmaxle 13150 xrlemin 13151 pfxtrcfv 14665 pfxco 14811 dvdssub2 16278 dvdsgcdb 16522 lcmdvdsb 16590 vdwapun 16952 poslubdg 18380 ipodrsfi 18505 mulginvcom 19038 matinvgcell 22329 mdetrsca2 22498 mdetrlin2 22501 mdetunilem5 22510 decpmatmul 22666 islp3 23040 bddibl 25748 nvpi 30603 nvabs 30608 nmmulg 33963 lineid 36078 oplecon1b 39201 opltcon1b 39205 oldmm2 39218 oldmj2 39222 cmt3N 39251 2llnneN 39410 cvrexchlem 39420 pmod2iN 39850 polcon2N 39920 paddatclN 39950 osumcllem3N 39959 ltrnval1 40135 cdleme48fv 40500 cdlemg33b 40708 trlcolem 40727 cdlemh 40818 cdlemi1 40819 cdlemi2 40820 cdlemi 40821 cdlemk4 40835 cdlemk19u1 40970 cdlemn3 41198 hgmapfval 41887 pell14qrgap 42870 mnringmulrcld 44224 stoweidlem22 46027 stoweidlem26 46031 sigarexp 46864 lindszr 48462 fv2arycl 48641 |
| Copyright terms: Public domain | W3C validator |