![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: enfii 9252 domsdomtrfi 9268 nppcan2 11567 nnncan 11571 nnncan2 11573 div11 11977 subdivcomb2 11990 ltdivmul 12170 ledivmul 12171 ltdiv23 12186 lediv23 12187 xrmaxlt 13243 xrltmin 13244 xrmaxle 13245 xrlemin 13246 pfxtrcfv 14741 pfxco 14887 dvdssub2 16349 dvdsgcdb 16592 lcmdvdsb 16660 vdwapun 17021 poslubdg 18484 ipodrsfi 18609 mulginvcom 19139 matinvgcell 22462 mdetrsca2 22631 mdetrlin2 22634 mdetunilem5 22643 decpmatmul 22799 islp3 23175 bddibl 25895 nvpi 30699 nvabs 30704 nmmulg 33914 lineid 36047 oplecon1b 39157 opltcon1b 39161 oldmm2 39174 oldmj2 39178 cmt3N 39207 2llnneN 39366 cvrexchlem 39376 pmod2iN 39806 polcon2N 39876 paddatclN 39906 osumcllem3N 39915 ltrnval1 40091 cdleme48fv 40456 cdlemg33b 40664 trlcolem 40683 cdlemh 40774 cdlemi1 40775 cdlemi2 40776 cdlemi 40777 cdlemk4 40791 cdlemk19u1 40926 cdlemn3 41154 hgmapfval 41843 pell14qrgap 42831 mnringmulrcld 44197 stoweidlem22 45943 stoweidlem26 45947 sigarexp 46780 lindszr 48198 fv2arycl 48382 |
Copyright terms: Public domain | W3C validator |