| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9110 domsdomtrfi 9126 nppcan2 11414 nnncan 11418 nnncan2 11420 div11 11826 subdivcomb2 11839 ltdivmul 12019 ledivmul 12020 ltdiv23 12035 lediv23 12036 xrmaxlt 13102 xrltmin 13103 xrmaxle 13104 xrlemin 13105 pfxtrcfv 14618 pfxco 14764 dvdssub2 16231 dvdsgcdb 16475 lcmdvdsb 16543 vdwapun 16905 poslubdg 18337 ipodrsfi 18464 mulginvcom 18997 matinvgcell 22339 mdetrsca2 22508 mdetrlin2 22511 mdetunilem5 22520 decpmatmul 22676 islp3 23050 bddibl 25758 nvpi 30630 nvabs 30635 nmmulg 33952 lineid 36076 oplecon1b 39199 opltcon1b 39203 oldmm2 39216 oldmj2 39220 cmt3N 39249 2llnneN 39408 cvrexchlem 39418 pmod2iN 39848 polcon2N 39918 paddatclN 39948 osumcllem3N 39957 ltrnval1 40133 cdleme48fv 40498 cdlemg33b 40706 trlcolem 40725 cdlemh 40816 cdlemi1 40817 cdlemi2 40818 cdlemi 40819 cdlemk4 40833 cdlemk19u1 40968 cdlemn3 41196 hgmapfval 41885 pell14qrgap 42868 mnringmulrcld 44221 stoweidlem22 46023 stoweidlem26 46027 sigarexp 46860 lindszr 48474 fv2arycl 48653 |
| Copyright terms: Public domain | W3C validator |