| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9106 domsdomtrfi 9122 nppcan2 11403 nnncan 11407 nnncan2 11409 div11 11815 subdivcomb2 11828 ltdivmul 12008 ledivmul 12009 ltdiv23 12024 lediv23 12025 xrmaxlt 13087 xrltmin 13088 xrmaxle 13089 xrlemin 13090 pfxtrcfv 14607 pfxco 14752 dvdssub2 16219 dvdsgcdb 16463 lcmdvdsb 16531 vdwapun 16893 poslubdg 18326 ipodrsfi 18453 mulginvcom 19020 matinvgcell 22370 mdetrsca2 22539 mdetrlin2 22542 mdetunilem5 22551 decpmatmul 22707 islp3 23081 bddibl 25788 nvpi 30668 nvabs 30673 nmmulg 34051 fineqvnttrclselem2 35214 fineqvnttrclselem3 35215 lineid 36199 oplecon1b 39373 opltcon1b 39377 oldmm2 39390 oldmj2 39394 cmt3N 39423 2llnneN 39581 cvrexchlem 39591 pmod2iN 40021 polcon2N 40091 paddatclN 40121 osumcllem3N 40130 ltrnval1 40306 cdleme48fv 40671 cdlemg33b 40879 trlcolem 40898 cdlemh 40989 cdlemi1 40990 cdlemi2 40991 cdlemi 40992 cdlemk4 41006 cdlemk19u1 41141 cdlemn3 41369 hgmapfval 42058 pell14qrgap 43032 mnringmulrcld 44385 stoweidlem22 46182 stoweidlem26 46186 sigarexp 47019 lindszr 48631 fv2arycl 48810 |
| Copyright terms: Public domain | W3C validator |