| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9198 domsdomtrfi 9214 nppcan2 11512 nnncan 11516 nnncan2 11518 div11 11922 subdivcomb2 11935 ltdivmul 12115 ledivmul 12116 ltdiv23 12131 lediv23 12132 xrmaxlt 13195 xrltmin 13196 xrmaxle 13197 xrlemin 13198 pfxtrcfv 14709 pfxco 14855 dvdssub2 16318 dvdsgcdb 16562 lcmdvdsb 16630 vdwapun 16992 poslubdg 18422 ipodrsfi 18547 mulginvcom 19080 matinvgcell 22371 mdetrsca2 22540 mdetrlin2 22543 mdetunilem5 22552 decpmatmul 22708 islp3 23082 bddibl 25791 nvpi 30594 nvabs 30599 nmmulg 33943 lineid 36047 oplecon1b 39165 opltcon1b 39169 oldmm2 39182 oldmj2 39186 cmt3N 39215 2llnneN 39374 cvrexchlem 39384 pmod2iN 39814 polcon2N 39884 paddatclN 39914 osumcllem3N 39923 ltrnval1 40099 cdleme48fv 40464 cdlemg33b 40672 trlcolem 40691 cdlemh 40782 cdlemi1 40783 cdlemi2 40784 cdlemi 40785 cdlemk4 40799 cdlemk19u1 40934 cdlemn3 41162 hgmapfval 41851 pell14qrgap 42845 mnringmulrcld 44200 stoweidlem22 45999 stoweidlem26 46003 sigarexp 46836 lindszr 48393 fv2arycl 48576 |
| Copyright terms: Public domain | W3C validator |