| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9150 domsdomtrfi 9166 nppcan2 11453 nnncan 11457 nnncan2 11459 div11 11865 subdivcomb2 11878 ltdivmul 12058 ledivmul 12059 ltdiv23 12074 lediv23 12075 xrmaxlt 13141 xrltmin 13142 xrmaxle 13143 xrlemin 13144 pfxtrcfv 14658 pfxco 14804 dvdssub2 16271 dvdsgcdb 16515 lcmdvdsb 16583 vdwapun 16945 poslubdg 18373 ipodrsfi 18498 mulginvcom 19031 matinvgcell 22322 mdetrsca2 22491 mdetrlin2 22494 mdetunilem5 22503 decpmatmul 22659 islp3 23033 bddibl 25741 nvpi 30596 nvabs 30601 nmmulg 33956 lineid 36071 oplecon1b 39194 opltcon1b 39198 oldmm2 39211 oldmj2 39215 cmt3N 39244 2llnneN 39403 cvrexchlem 39413 pmod2iN 39843 polcon2N 39913 paddatclN 39943 osumcllem3N 39952 ltrnval1 40128 cdleme48fv 40493 cdlemg33b 40701 trlcolem 40720 cdlemh 40811 cdlemi1 40812 cdlemi2 40813 cdlemi 40814 cdlemk4 40828 cdlemk19u1 40963 cdlemn3 41191 hgmapfval 41880 pell14qrgap 42863 mnringmulrcld 44217 stoweidlem22 46020 stoweidlem26 46024 sigarexp 46857 lindszr 48458 fv2arycl 48637 |
| Copyright terms: Public domain | W3C validator |