| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
| 2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: enfii 9127 domsdomtrfi 9143 nppcan2 11429 nnncan 11433 nnncan2 11435 div11 11841 subdivcomb2 11854 ltdivmul 12034 ledivmul 12035 ltdiv23 12050 lediv23 12051 xrmaxlt 13117 xrltmin 13118 xrmaxle 13119 xrlemin 13120 pfxtrcfv 14634 pfxco 14780 dvdssub2 16247 dvdsgcdb 16491 lcmdvdsb 16559 vdwapun 16921 poslubdg 18349 ipodrsfi 18474 mulginvcom 19007 matinvgcell 22298 mdetrsca2 22467 mdetrlin2 22470 mdetunilem5 22479 decpmatmul 22635 islp3 23009 bddibl 25717 nvpi 30569 nvabs 30574 nmmulg 33929 lineid 36044 oplecon1b 39167 opltcon1b 39171 oldmm2 39184 oldmj2 39188 cmt3N 39217 2llnneN 39376 cvrexchlem 39386 pmod2iN 39816 polcon2N 39886 paddatclN 39916 osumcllem3N 39925 ltrnval1 40101 cdleme48fv 40466 cdlemg33b 40674 trlcolem 40693 cdlemh 40784 cdlemi1 40785 cdlemi2 40786 cdlemi 40787 cdlemk4 40801 cdlemk19u1 40936 cdlemn3 41164 hgmapfval 41853 pell14qrgap 42836 mnringmulrcld 44190 stoweidlem22 45993 stoweidlem26 45997 sigarexp 46830 lindszr 48431 fv2arycl 48610 |
| Copyright terms: Public domain | W3C validator |