Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: enfii 8932 domtrfi 8938 nppcan2 11182 nnncan 11186 nnncan2 11188 subdivcomb2 11601 ltdivmul 11780 ledivmul 11781 ltdiv23 11796 lediv23 11797 xrmaxlt 12844 xrltmin 12845 xrmaxle 12846 xrlemin 12847 pfxtrcfv 14334 pfxco 14479 dvdssub2 15938 dvdsgcdb 16181 lcmdvdsb 16246 vdwapun 16603 poslubdg 18047 ipodrsfi 18172 mulginvcom 18643 matinvgcell 21492 mdetrsca2 21661 mdetrlin2 21664 mdetunilem5 21673 decpmatmul 21829 islp3 22205 bddibl 24909 nvpi 28930 nvabs 28935 nmmulg 31818 lineid 34312 oplecon1b 37142 opltcon1b 37146 oldmm2 37159 oldmj2 37163 cmt3N 37192 2llnneN 37350 cvrexchlem 37360 pmod2iN 37790 polcon2N 37860 paddatclN 37890 osumcllem3N 37899 ltrnval1 38075 cdleme48fv 38440 cdlemg33b 38648 trlcolem 38667 cdlemh 38758 cdlemi1 38759 cdlemi2 38760 cdlemi 38761 cdlemk4 38775 cdlemk19u1 38910 cdlemn3 39138 hgmapfval 39827 pell14qrgap 40613 mnringmulrcld 41735 stoweidlem22 43453 stoweidlem26 43457 sigarexp 44262 lindszr 45698 fv2arycl 45882 |
Copyright terms: Public domain | W3C validator |