![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) |
syld3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | syld3an2.1 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
4 | syld3an2.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: enfii 9223 domsdomtrfi 9239 nppcan2 11537 nnncan 11541 nnncan2 11543 div11 11947 subdivcomb2 11960 ltdivmul 12140 ledivmul 12141 ltdiv23 12156 lediv23 12157 xrmaxlt 13219 xrltmin 13220 xrmaxle 13221 xrlemin 13222 pfxtrcfv 14727 pfxco 14873 dvdssub2 16334 dvdsgcdb 16578 lcmdvdsb 16646 vdwapun 17007 poslubdg 18471 ipodrsfi 18596 mulginvcom 19129 matinvgcell 22456 mdetrsca2 22625 mdetrlin2 22628 mdetunilem5 22637 decpmatmul 22793 islp3 23169 bddibl 25889 nvpi 30695 nvabs 30700 nmmulg 33928 lineid 36064 oplecon1b 39182 opltcon1b 39186 oldmm2 39199 oldmj2 39203 cmt3N 39232 2llnneN 39391 cvrexchlem 39401 pmod2iN 39831 polcon2N 39901 paddatclN 39931 osumcllem3N 39940 ltrnval1 40116 cdleme48fv 40481 cdlemg33b 40689 trlcolem 40708 cdlemh 40799 cdlemi1 40800 cdlemi2 40801 cdlemi 40802 cdlemk4 40816 cdlemk19u1 40951 cdlemn3 41179 hgmapfval 41868 pell14qrgap 42862 mnringmulrcld 44223 stoweidlem22 45977 stoweidlem26 45981 sigarexp 46814 lindszr 48314 fv2arycl 48497 |
Copyright terms: Public domain | W3C validator |