![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (chjcom 30759 analog.) (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
latjcom.b | β’ π΅ = (BaseβπΎ) |
latjcom.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjcom | β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5714 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
2 | 1 | 3adant1 1131 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
3 | latjcom.b | . . . . . . 7 β’ π΅ = (BaseβπΎ) | |
4 | latjcom.j | . . . . . . 7 β’ β¨ = (joinβπΎ) | |
5 | eqid 2733 | . . . . . . 7 β’ (meetβπΎ) = (meetβπΎ) | |
6 | 3, 4, 5 | islat 18386 | . . . . . 6 β’ (πΎ β Lat β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom (meetβπΎ) = (π΅ Γ π΅)))) |
7 | simprl 770 | . . . . . 6 β’ ((πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom (meetβπΎ) = (π΅ Γ π΅))) β dom β¨ = (π΅ Γ π΅)) | |
8 | 6, 7 | sylbi 216 | . . . . 5 β’ (πΎ β Lat β dom β¨ = (π΅ Γ π΅)) |
9 | 8 | 3ad2ant1 1134 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β dom β¨ = (π΅ Γ π΅)) |
10 | 2, 9 | eleqtrrd 2837 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β¨ ) |
11 | opelxpi 5714 | . . . . . 6 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
12 | 11 | ancoms 460 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
13 | 12 | 3adant1 1131 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
14 | 13, 9 | eleqtrrd 2837 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β¨ ) |
15 | 10, 14 | jca 513 | . 2 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) |
16 | latpos 18391 | . . 3 β’ (πΎ β Lat β πΎ β Poset) | |
17 | 3, 4 | joincom 18355 | . . 3 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) β (π β¨ π) = (π β¨ π)) |
18 | 16, 17 | syl3anl1 1413 | . 2 β’ (((πΎ β Lat β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) β (π β¨ π) = (π β¨ π)) |
19 | 15, 18 | mpdan 686 | 1 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β¨cop 4635 Γ cxp 5675 dom cdm 5677 βcfv 6544 (class class class)co 7409 Basecbs 17144 Posetcpo 18260 joincjn 18264 meetcmee 18265 Latclat 18384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-lub 18299 df-join 18301 df-lat 18385 |
This theorem is referenced by: latleeqj2 18405 latjlej2 18407 latnle 18426 latmlej12 18432 latj12 18437 latj32 18438 latj13 18439 latj31 18440 latj4rot 18443 mod2ile 18447 latdisdlem 18449 olj02 38096 omllaw4 38116 cmt2N 38120 cmtbr3N 38124 cvlexch2 38199 cvlexchb2 38201 cvlatexchb2 38205 cvlatexch2 38207 cvlatexch3 38208 cvlatcvr2 38212 cvlsupr2 38213 cvlsupr7 38218 cvlsupr8 38219 hlatjcom 38238 hlrelat5N 38272 cvrval5 38286 cvrexch 38291 cvratlem 38292 cvrat 38293 2atlt 38310 cvrat3 38313 cvrat4 38314 cvrat42 38315 4noncolr3 38324 1cvrat 38347 3atlem1 38354 4atlem4d 38473 4atlem12 38483 paddcom 38684 paddasslem2 38692 pmapjat2 38725 atmod2i1 38732 atmod2i2 38733 llnmod2i2 38734 atmod4i1 38737 atmod4i2 38738 dalawlem4 38745 dalawlem9 38750 dalawlem12 38753 lhpjat2 38892 lhple 38913 trljat1 39037 trljat2 39038 cdlemc1 39062 cdlemc6 39067 cdlemd1 39069 cdleme5 39111 cdleme9 39124 cdleme10 39125 cdleme19e 39178 trlcolem 39597 trljco2 39612 cdlemk7 39719 cdlemk7u 39741 cdlemkid1 39793 dih1 40157 dihjatc2N 40183 |
Copyright terms: Public domain | W3C validator |