MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjcom Structured version   Visualization version   GIF version

Theorem latjcom 18353
Description: The join of a lattice commutes. (chjcom 31450 analog.) (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
latjcom.b 𝐵 = (Base‘𝐾)
latjcom.j = (join‘𝐾)
Assertion
Ref Expression
latjcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latjcom
StepHypRef Expression
1 opelxpi 5656 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latjcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 latjcom.j . . . . . . 7 = (join‘𝐾)
5 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
63, 4, 5islat 18339 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))))
7 simprl 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 217 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1133 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2831 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5656 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 458 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2831 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 511 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18344 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 4joincom 18306 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1414 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 687 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4583   × cxp 5617  dom cdm 5619  cfv 6482  (class class class)co 7349  Basecbs 17120  Posetcpo 18213  joincjn 18217  meetcmee 18218  Latclat 18337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-lub 18250  df-join 18252  df-lat 18338
This theorem is referenced by:  latleeqj2  18358  latjlej2  18360  latnle  18379  latmlej12  18385  latj12  18390  latj32  18391  latj13  18392  latj31  18393  latj4rot  18396  mod2ile  18400  latdisdlem  18402  olj02  39215  omllaw4  39235  cmt2N  39239  cmtbr3N  39243  cvlexch2  39318  cvlexchb2  39320  cvlatexchb2  39324  cvlatexch2  39326  cvlatexch3  39327  cvlatcvr2  39331  cvlsupr2  39332  cvlsupr7  39337  cvlsupr8  39338  hlatjcom  39357  hlrelat5N  39390  cvrval5  39404  cvrexch  39409  cvratlem  39410  cvrat  39411  2atlt  39428  cvrat3  39431  cvrat4  39432  cvrat42  39433  4noncolr3  39442  1cvrat  39465  3atlem1  39472  4atlem4d  39591  4atlem12  39601  paddcom  39802  paddasslem2  39810  pmapjat2  39843  atmod2i1  39850  atmod2i2  39851  llnmod2i2  39852  atmod4i1  39855  atmod4i2  39856  dalawlem4  39863  dalawlem9  39868  dalawlem12  39871  lhpjat2  40010  lhple  40031  trljat1  40155  trljat2  40156  cdlemc1  40180  cdlemc6  40185  cdlemd1  40187  cdleme5  40229  cdleme9  40242  cdleme10  40243  cdleme19e  40296  trlcolem  40715  trljco2  40730  cdlemk7  40837  cdlemk7u  40859  cdlemkid1  40911  dih1  41275  dihjatc2N  41301
  Copyright terms: Public domain W3C validator