MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjcom Structured version   Visualization version   GIF version

Theorem latjcom 18413
Description: The join of a lattice commutes. (chjcom 31442 analog.) (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
latjcom.b 𝐵 = (Base‘𝐾)
latjcom.j = (join‘𝐾)
Assertion
Ref Expression
latjcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latjcom
StepHypRef Expression
1 opelxpi 5678 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latjcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 latjcom.j . . . . . . 7 = (join‘𝐾)
5 eqid 2730 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
63, 4, 5islat 18399 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))))
7 simprl 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 217 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1133 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2832 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5678 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 458 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2832 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 511 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18404 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 4joincom 18368 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1414 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 687 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  Posetcpo 18275  joincjn 18279  meetcmee 18280  Latclat 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-lub 18312  df-join 18314  df-lat 18398
This theorem is referenced by:  latleeqj2  18418  latjlej2  18420  latnle  18439  latmlej12  18445  latj12  18450  latj32  18451  latj13  18452  latj31  18453  latj4rot  18456  mod2ile  18460  latdisdlem  18462  olj02  39226  omllaw4  39246  cmt2N  39250  cmtbr3N  39254  cvlexch2  39329  cvlexchb2  39331  cvlatexchb2  39335  cvlatexch2  39337  cvlatexch3  39338  cvlatcvr2  39342  cvlsupr2  39343  cvlsupr7  39348  cvlsupr8  39349  hlatjcom  39368  hlrelat5N  39402  cvrval5  39416  cvrexch  39421  cvratlem  39422  cvrat  39423  2atlt  39440  cvrat3  39443  cvrat4  39444  cvrat42  39445  4noncolr3  39454  1cvrat  39477  3atlem1  39484  4atlem4d  39603  4atlem12  39613  paddcom  39814  paddasslem2  39822  pmapjat2  39855  atmod2i1  39862  atmod2i2  39863  llnmod2i2  39864  atmod4i1  39867  atmod4i2  39868  dalawlem4  39875  dalawlem9  39880  dalawlem12  39883  lhpjat2  40022  lhple  40043  trljat1  40167  trljat2  40168  cdlemc1  40192  cdlemc6  40197  cdlemd1  40199  cdleme5  40241  cdleme9  40254  cdleme10  40255  cdleme19e  40308  trlcolem  40727  trljco2  40742  cdlemk7  40849  cdlemk7u  40871  cdlemkid1  40923  dih1  41287  dihjatc2N  41313
  Copyright terms: Public domain W3C validator