Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (chjcom 29769 analog.) (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
latjcom.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcom.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5617 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
2 | 1 | 3adant1 1128 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
3 | latjcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
4 | latjcom.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
5 | eqid 2738 | . . . . . . 7 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | 3, 4, 5 | islat 18066 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵)))) |
7 | simprl 767 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
8 | 6, 7 | sylbi 216 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
9 | 8 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
10 | 2, 9 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
11 | opelxpi 5617 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
13 | 12 | 3adant1 1128 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
14 | 13, 9 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∨ ) |
15 | 10, 14 | jca 511 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) |
16 | latpos 18071 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 3, 4 | joincom 18035 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
18 | 16, 17 | syl3anl1 1410 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
19 | 15, 18 | mpdan 683 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Posetcpo 17940 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-lub 17979 df-join 17981 df-lat 18065 |
This theorem is referenced by: latleeqj2 18085 latjlej2 18087 latnle 18106 latmlej12 18112 latj12 18117 latj32 18118 latj13 18119 latj31 18120 latj4rot 18123 mod2ile 18127 latdisdlem 18129 olj02 37167 omllaw4 37187 cmt2N 37191 cmtbr3N 37195 cvlexch2 37270 cvlexchb2 37272 cvlatexchb2 37276 cvlatexch2 37278 cvlatexch3 37279 cvlatcvr2 37283 cvlsupr2 37284 cvlsupr7 37289 cvlsupr8 37290 hlatjcom 37309 hlrelat5N 37342 cvrval5 37356 cvrexch 37361 cvratlem 37362 cvrat 37363 2atlt 37380 cvrat3 37383 cvrat4 37384 cvrat42 37385 4noncolr3 37394 1cvrat 37417 3atlem1 37424 4atlem4d 37543 4atlem12 37553 paddcom 37754 paddasslem2 37762 pmapjat2 37795 atmod2i1 37802 atmod2i2 37803 llnmod2i2 37804 atmod4i1 37807 atmod4i2 37808 dalawlem4 37815 dalawlem9 37820 dalawlem12 37823 lhpjat2 37962 lhple 37983 trljat1 38107 trljat2 38108 cdlemc1 38132 cdlemc6 38137 cdlemd1 38139 cdleme5 38181 cdleme9 38194 cdleme10 38195 cdleme19e 38248 trlcolem 38667 trljco2 38682 cdlemk7 38789 cdlemk7u 38811 cdlemkid1 38863 dih1 39227 dihjatc2N 39253 |
Copyright terms: Public domain | W3C validator |