MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjcom Structured version   Visualization version   GIF version

Theorem latjcom 18388
Description: The join of a lattice commutes. (chjcom 31485 analog.) (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
latjcom.b 𝐵 = (Base‘𝐾)
latjcom.j = (join‘𝐾)
Assertion
Ref Expression
latjcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latjcom
StepHypRef Expression
1 opelxpi 5668 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latjcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 latjcom.j . . . . . . 7 = (join‘𝐾)
5 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
63, 4, 5islat 18374 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))))
7 simprl 770 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 217 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1133 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2831 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5668 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 458 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1130 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2831 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 511 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 18379 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 4joincom 18341 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1414 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 687 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   × cxp 5629  dom cdm 5631  cfv 6499  (class class class)co 7369  Basecbs 17155  Posetcpo 18248  joincjn 18252  meetcmee 18253  Latclat 18372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-lub 18285  df-join 18287  df-lat 18373
This theorem is referenced by:  latleeqj2  18393  latjlej2  18395  latnle  18414  latmlej12  18420  latj12  18425  latj32  18426  latj13  18427  latj31  18428  latj4rot  18431  mod2ile  18435  latdisdlem  18437  olj02  39212  omllaw4  39232  cmt2N  39236  cmtbr3N  39240  cvlexch2  39315  cvlexchb2  39317  cvlatexchb2  39321  cvlatexch2  39323  cvlatexch3  39324  cvlatcvr2  39328  cvlsupr2  39329  cvlsupr7  39334  cvlsupr8  39335  hlatjcom  39354  hlrelat5N  39388  cvrval5  39402  cvrexch  39407  cvratlem  39408  cvrat  39409  2atlt  39426  cvrat3  39429  cvrat4  39430  cvrat42  39431  4noncolr3  39440  1cvrat  39463  3atlem1  39470  4atlem4d  39589  4atlem12  39599  paddcom  39800  paddasslem2  39808  pmapjat2  39841  atmod2i1  39848  atmod2i2  39849  llnmod2i2  39850  atmod4i1  39853  atmod4i2  39854  dalawlem4  39861  dalawlem9  39866  dalawlem12  39869  lhpjat2  40008  lhple  40029  trljat1  40153  trljat2  40154  cdlemc1  40178  cdlemc6  40183  cdlemd1  40185  cdleme5  40227  cdleme9  40240  cdleme10  40241  cdleme19e  40294  trlcolem  40713  trljco2  40728  cdlemk7  40835  cdlemk7u  40857  cdlemkid1  40909  dih1  41273  dihjatc2N  41299
  Copyright terms: Public domain W3C validator