| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version | ||
| Description: The join of a lattice commutes. (chjcom 31486 analog.) (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcom.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5651 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 3 | latjcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | latjcom.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | 3, 4, 5 | islat 18339 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵)))) |
| 7 | simprl 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
| 8 | 6, 7 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
| 9 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
| 10 | 2, 9 | eleqtrrd 2834 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 11 | opelxpi 5651 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 13 | 12 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 14 | 13, 9 | eleqtrrd 2834 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∨ ) |
| 15 | 10, 14 | jca 511 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) |
| 16 | latpos 18344 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 3, 4 | joincom 18306 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 18 | 16, 17 | syl3anl1 1414 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 19 | 15, 18 | mpdan 687 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Posetcpo 18213 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 |
| This theorem is referenced by: latleeqj2 18358 latjlej2 18360 latnle 18379 latmlej12 18385 latj12 18390 latj32 18391 latj13 18392 latj31 18393 latj4rot 18396 mod2ile 18400 latdisdlem 18402 olj02 39335 omllaw4 39355 cmt2N 39359 cmtbr3N 39363 cvlexch2 39438 cvlexchb2 39440 cvlatexchb2 39444 cvlatexch2 39446 cvlatexch3 39447 cvlatcvr2 39451 cvlsupr2 39452 cvlsupr7 39457 cvlsupr8 39458 hlatjcom 39477 hlrelat5N 39510 cvrval5 39524 cvrexch 39529 cvratlem 39530 cvrat 39531 2atlt 39548 cvrat3 39551 cvrat4 39552 cvrat42 39553 4noncolr3 39562 1cvrat 39585 3atlem1 39592 4atlem4d 39711 4atlem12 39721 paddcom 39922 paddasslem2 39930 pmapjat2 39963 atmod2i1 39970 atmod2i2 39971 llnmod2i2 39972 atmod4i1 39975 atmod4i2 39976 dalawlem4 39983 dalawlem9 39988 dalawlem12 39991 lhpjat2 40130 lhple 40151 trljat1 40275 trljat2 40276 cdlemc1 40300 cdlemc6 40305 cdlemd1 40307 cdleme5 40349 cdleme9 40362 cdleme10 40363 cdleme19e 40416 trlcolem 40835 trljco2 40850 cdlemk7 40957 cdlemk7u 40979 cdlemkid1 41031 dih1 41395 dihjatc2N 41421 |
| Copyright terms: Public domain | W3C validator |