![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (chjcom 30754 analog.) (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
latjcom.b | β’ π΅ = (BaseβπΎ) |
latjcom.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjcom | β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5713 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
2 | 1 | 3adant1 1130 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
3 | latjcom.b | . . . . . . 7 β’ π΅ = (BaseβπΎ) | |
4 | latjcom.j | . . . . . . 7 β’ β¨ = (joinβπΎ) | |
5 | eqid 2732 | . . . . . . 7 β’ (meetβπΎ) = (meetβπΎ) | |
6 | 3, 4, 5 | islat 18385 | . . . . . 6 β’ (πΎ β Lat β (πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom (meetβπΎ) = (π΅ Γ π΅)))) |
7 | simprl 769 | . . . . . 6 β’ ((πΎ β Poset β§ (dom β¨ = (π΅ Γ π΅) β§ dom (meetβπΎ) = (π΅ Γ π΅))) β dom β¨ = (π΅ Γ π΅)) | |
8 | 6, 7 | sylbi 216 | . . . . 5 β’ (πΎ β Lat β dom β¨ = (π΅ Γ π΅)) |
9 | 8 | 3ad2ant1 1133 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β dom β¨ = (π΅ Γ π΅)) |
10 | 2, 9 | eleqtrrd 2836 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β¨ ) |
11 | opelxpi 5713 | . . . . . 6 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) | |
12 | 11 | ancoms 459 | . . . . 5 β’ ((π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
13 | 12 | 3adant1 1130 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β (π΅ Γ π΅)) |
14 | 13, 9 | eleqtrrd 2836 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β β¨π, πβ© β dom β¨ ) |
15 | 10, 14 | jca 512 | . 2 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) |
16 | latpos 18390 | . . 3 β’ (πΎ β Lat β πΎ β Poset) | |
17 | 3, 4 | joincom 18354 | . . 3 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) β (π β¨ π) = (π β¨ π)) |
18 | 16, 17 | syl3anl1 1412 | . 2 β’ (((πΎ β Lat β§ π β π΅ β§ π β π΅) β§ (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom β¨ )) β (π β¨ π) = (π β¨ π)) |
19 | 15, 18 | mpdan 685 | 1 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β¨cop 4634 Γ cxp 5674 dom cdm 5676 βcfv 6543 (class class class)co 7408 Basecbs 17143 Posetcpo 18259 joincjn 18263 meetcmee 18264 Latclat 18383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-lub 18298 df-join 18300 df-lat 18384 |
This theorem is referenced by: latleeqj2 18404 latjlej2 18406 latnle 18425 latmlej12 18431 latj12 18436 latj32 18437 latj13 18438 latj31 18439 latj4rot 18442 mod2ile 18446 latdisdlem 18448 olj02 38091 omllaw4 38111 cmt2N 38115 cmtbr3N 38119 cvlexch2 38194 cvlexchb2 38196 cvlatexchb2 38200 cvlatexch2 38202 cvlatexch3 38203 cvlatcvr2 38207 cvlsupr2 38208 cvlsupr7 38213 cvlsupr8 38214 hlatjcom 38233 hlrelat5N 38267 cvrval5 38281 cvrexch 38286 cvratlem 38287 cvrat 38288 2atlt 38305 cvrat3 38308 cvrat4 38309 cvrat42 38310 4noncolr3 38319 1cvrat 38342 3atlem1 38349 4atlem4d 38468 4atlem12 38478 paddcom 38679 paddasslem2 38687 pmapjat2 38720 atmod2i1 38727 atmod2i2 38728 llnmod2i2 38729 atmod4i1 38732 atmod4i2 38733 dalawlem4 38740 dalawlem9 38745 dalawlem12 38748 lhpjat2 38887 lhple 38908 trljat1 39032 trljat2 39033 cdlemc1 39057 cdlemc6 39062 cdlemd1 39064 cdleme5 39106 cdleme9 39119 cdleme10 39120 cdleme19e 39173 trlcolem 39592 trljco2 39607 cdlemk7 39714 cdlemk7u 39736 cdlemkid1 39788 dih1 40152 dihjatc2N 40178 |
Copyright terms: Public domain | W3C validator |