| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version | ||
| Description: The join of a lattice commutes. (chjcom 31485 analog.) (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcom.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5668 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 3 | latjcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | latjcom.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | 3, 4, 5 | islat 18374 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵)))) |
| 7 | simprl 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
| 8 | 6, 7 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
| 9 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
| 10 | 2, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 11 | opelxpi 5668 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 13 | 12 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 14 | 13, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∨ ) |
| 15 | 10, 14 | jca 511 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) |
| 16 | latpos 18379 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 3, 4 | joincom 18341 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 18 | 16, 17 | syl3anl1 1414 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 19 | 15, 18 | mpdan 687 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 × cxp 5629 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Posetcpo 18248 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-join 18287 df-lat 18373 |
| This theorem is referenced by: latleeqj2 18393 latjlej2 18395 latnle 18414 latmlej12 18420 latj12 18425 latj32 18426 latj13 18427 latj31 18428 latj4rot 18431 mod2ile 18435 latdisdlem 18437 olj02 39212 omllaw4 39232 cmt2N 39236 cmtbr3N 39240 cvlexch2 39315 cvlexchb2 39317 cvlatexchb2 39321 cvlatexch2 39323 cvlatexch3 39324 cvlatcvr2 39328 cvlsupr2 39329 cvlsupr7 39334 cvlsupr8 39335 hlatjcom 39354 hlrelat5N 39388 cvrval5 39402 cvrexch 39407 cvratlem 39408 cvrat 39409 2atlt 39426 cvrat3 39429 cvrat4 39430 cvrat42 39431 4noncolr3 39440 1cvrat 39463 3atlem1 39470 4atlem4d 39589 4atlem12 39599 paddcom 39800 paddasslem2 39808 pmapjat2 39841 atmod2i1 39848 atmod2i2 39849 llnmod2i2 39850 atmod4i1 39853 atmod4i2 39854 dalawlem4 39861 dalawlem9 39866 dalawlem12 39869 lhpjat2 40008 lhple 40029 trljat1 40153 trljat2 40154 cdlemc1 40178 cdlemc6 40183 cdlemd1 40185 cdleme5 40227 cdleme9 40240 cdleme10 40241 cdleme19e 40294 trlcolem 40713 trljco2 40728 cdlemk7 40835 cdlemk7u 40857 cdlemkid1 40909 dih1 41273 dihjatc2N 41299 |
| Copyright terms: Public domain | W3C validator |