| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version | ||
| Description: The join of a lattice commutes. (chjcom 31435 analog.) (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcom.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5675 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 3 | latjcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | latjcom.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | 3, 4, 5 | islat 18392 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵)))) |
| 7 | simprl 770 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
| 8 | 6, 7 | sylbi 217 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
| 9 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
| 10 | 2, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 11 | opelxpi 5675 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 13 | 12 | 3adant1 1130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
| 14 | 13, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∨ ) |
| 15 | 10, 14 | jca 511 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) |
| 16 | latpos 18397 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 3, 4 | joincom 18361 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 18 | 16, 17 | syl3anl1 1414 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 19 | 15, 18 | mpdan 687 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Posetcpo 18268 joincjn 18272 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-join 18307 df-lat 18391 |
| This theorem is referenced by: latleeqj2 18411 latjlej2 18413 latnle 18432 latmlej12 18438 latj12 18443 latj32 18444 latj13 18445 latj31 18446 latj4rot 18449 mod2ile 18453 latdisdlem 18455 olj02 39219 omllaw4 39239 cmt2N 39243 cmtbr3N 39247 cvlexch2 39322 cvlexchb2 39324 cvlatexchb2 39328 cvlatexch2 39330 cvlatexch3 39331 cvlatcvr2 39335 cvlsupr2 39336 cvlsupr7 39341 cvlsupr8 39342 hlatjcom 39361 hlrelat5N 39395 cvrval5 39409 cvrexch 39414 cvratlem 39415 cvrat 39416 2atlt 39433 cvrat3 39436 cvrat4 39437 cvrat42 39438 4noncolr3 39447 1cvrat 39470 3atlem1 39477 4atlem4d 39596 4atlem12 39606 paddcom 39807 paddasslem2 39815 pmapjat2 39848 atmod2i1 39855 atmod2i2 39856 llnmod2i2 39857 atmod4i1 39860 atmod4i2 39861 dalawlem4 39868 dalawlem9 39873 dalawlem12 39876 lhpjat2 40015 lhple 40036 trljat1 40160 trljat2 40161 cdlemc1 40185 cdlemc6 40190 cdlemd1 40192 cdleme5 40234 cdleme9 40247 cdleme10 40248 cdleme19e 40301 trlcolem 40720 trljco2 40735 cdlemk7 40842 cdlemk7u 40864 cdlemkid1 40916 dih1 41280 dihjatc2N 41306 |
| Copyright terms: Public domain | W3C validator |