Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem53 | Structured version Visualization version GIF version |
Description: Lemma for dath 37729. The auxliary axis of perspectivity 𝐵 is a line (analogous to the actual axis of perspectivity 𝑋 in dalem15 37671. (Contributed by NM, 8-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem53.m | ⊢ ∧ = (meet‘𝐾) |
dalem53.n | ⊢ 𝑁 = (LLines‘𝐾) |
dalem53.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem53.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem53.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem53.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
dalem53.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
dalem53.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
dalem53.b1 | ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) |
Ref | Expression |
---|---|
dalem53 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | dalem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | dalem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | dalem.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | dalem.ps | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
6 | dalem53.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
7 | dalem53.o | . . 3 ⊢ 𝑂 = (LPlanes‘𝐾) | |
8 | dalem53.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem53.z | . . 3 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | dalem53.g | . . 3 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
11 | dalem53.h | . . 3 ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) | |
12 | dalem53.i | . . 3 ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dalem51 37716 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌)) |
14 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
15 | 14, 4 | atbase 37282 | . . . . 5 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
16 | 15 | anim2i 616 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾))) |
17 | 16 | 3anim1i 1150 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))) |
18 | biid 260 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))))) | |
19 | dalem53.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
20 | eqid 2739 | . . . 4 ⊢ ((𝐺 ∨ 𝐻) ∨ 𝐼) = ((𝐺 ∨ 𝐻) ∨ 𝐼) | |
21 | dalem53.b1 | . . . 4 ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) | |
22 | 18, 2, 3, 4, 6, 19, 7, 20, 8, 21 | dalem15 37671 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) → 𝐵 ∈ 𝑁) |
23 | 17, 22 | syl3anl1 1410 | . 2 ⊢ (((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) → 𝐵 ∈ 𝑁) |
24 | 13, 23 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 meetcmee 18011 Atomscatm 37256 HLchlt 37343 LLinesclln 37484 LPlanesclpl 37485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-llines 37491 df-lplanes 37492 df-lvols 37493 |
This theorem is referenced by: dalem54 37719 dalem55 37720 dalem57 37722 dalem60 37725 |
Copyright terms: Public domain | W3C validator |