| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fzdif1 13542 psdmul 22086 efrlim 26912 addsval 27909 mulscan2d 28122 dvdsruasso 33349 ssdifidlprm 33422 fsuppssind 42574 tfsconcat0i 43327 oadif1lem 43361 oadif1 43362 reabsifneg 43614 natglobalincr 46868 f1cof1b 47071 isubgr3stgrlem6 47963 prsthinc 49446 |
| Copyright terms: Public domain | W3C validator |