| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fzdif1 13508 psdmul 22051 efrlim 26877 addsval 27874 mulscan2d 28087 dvdsruasso 33322 ssdifidlprm 33395 fsuppssind 42570 tfsconcat0i 43322 oadif1lem 43356 oadif1 43357 reabsifneg 43609 natglobalincr 46862 f1cof1b 47065 isubgr3stgrlem6 47959 prsthinc 49453 |
| Copyright terms: Public domain | W3C validator |