MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbida Structured version   Visualization version   GIF version

Theorem sylbida 592
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
sylbida.1 (𝜑 → (𝜓𝜒))
sylbida.2 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
sylbida ((𝜑𝜓) → 𝜃)

Proof of Theorem sylbida
StepHypRef Expression
1 sylbida.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpa 476 . 2 ((𝜑𝜓) → 𝜒)
3 sylbida.2 . 2 ((𝜑𝜒) → 𝜃)
42, 3syldan 591 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fzdif1  13573  psdmul  22060  efrlim  26886  addsval  27876  mulscan2d  28089  dvdsruasso  33363  ssdifidlprm  33436  fsuppssind  42588  tfsconcat0i  43341  oadif1lem  43375  oadif1  43376  reabsifneg  43628  natglobalincr  46882  f1cof1b  47082  isubgr3stgrlem6  47974  prsthinc  49457
  Copyright terms: Public domain W3C validator