MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbida Structured version   Visualization version   GIF version

Theorem sylbida 592
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
sylbida.1 (𝜑 → (𝜓𝜒))
sylbida.2 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
sylbida ((𝜑𝜓) → 𝜃)

Proof of Theorem sylbida
StepHypRef Expression
1 sylbida.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpa 476 . 2 ((𝜑𝜓) → 𝜒)
3 sylbida.2 . 2 ((𝜑𝜒) → 𝜃)
42, 3syldan 591 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fzdif1  13542  psdmul  22086  efrlim  26912  addsval  27909  mulscan2d  28122  dvdsruasso  33349  ssdifidlprm  33422  fsuppssind  42574  tfsconcat0i  43327  oadif1lem  43361  oadif1  43362  reabsifneg  43614  natglobalincr  46868  f1cof1b  47071  isubgr3stgrlem6  47963  prsthinc  49446
  Copyright terms: Public domain W3C validator