| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fzdif1 13622 psdmul 22104 efrlim 26931 addsval 27921 mulscan2d 28134 dvdsruasso 33400 ssdifidlprm 33473 fsuppssind 42616 tfsconcat0i 43369 oadif1lem 43403 oadif1 43404 reabsifneg 43656 natglobalincr 46906 f1cof1b 47106 isubgr3stgrlem6 47983 prsthinc 49350 |
| Copyright terms: Public domain | W3C validator |