| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fzdif1 13566 psdmul 22053 efrlim 26879 addsval 27869 mulscan2d 28082 dvdsruasso 33356 ssdifidlprm 33429 fsuppssind 42581 tfsconcat0i 43334 oadif1lem 43368 oadif1 43369 reabsifneg 43621 natglobalincr 46875 f1cof1b 47078 isubgr3stgrlem6 47970 prsthinc 49453 |
| Copyright terms: Public domain | W3C validator |