MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbida Structured version   Visualization version   GIF version

Theorem sylbida 592
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
sylbida.1 (𝜑 → (𝜓𝜒))
sylbida.2 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
sylbida ((𝜑𝜓) → 𝜃)

Proof of Theorem sylbida
StepHypRef Expression
1 sylbida.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpa 476 . 2 ((𝜑𝜓) → 𝜒)
3 sylbida.2 . 2 ((𝜑𝜒) → 𝜃)
42, 3syldan 591 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fzdif1  13622  psdmul  22104  efrlim  26931  addsval  27921  mulscan2d  28134  dvdsruasso  33400  ssdifidlprm  33473  fsuppssind  42616  tfsconcat0i  43369  oadif1lem  43403  oadif1  43404  reabsifneg  43656  natglobalincr  46906  f1cof1b  47106  isubgr3stgrlem6  47983  prsthinc  49350
  Copyright terms: Public domain W3C validator