MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbida Structured version   Visualization version   GIF version

Theorem sylbida 591
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
sylbida.1 (𝜑 → (𝜓𝜒))
sylbida.2 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
sylbida ((𝜑𝜓) → 𝜃)

Proof of Theorem sylbida
StepHypRef Expression
1 sylbida.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpa 476 . 2 ((𝜑𝜓) → 𝜒)
3 sylbida.2 . 2 ((𝜑𝜒) → 𝜃)
42, 3syldan 590 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  addsval  34105  fsuppssind  40262  f1cof1b  44520  prsthinc  46287
  Copyright terms: Public domain W3C validator