MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbida Structured version   Visualization version   GIF version

Theorem sylbida 592
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
sylbida.1 (𝜑 → (𝜓𝜒))
sylbida.2 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
sylbida ((𝜑𝜓) → 𝜃)

Proof of Theorem sylbida
StepHypRef Expression
1 sylbida.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpa 476 . 2 ((𝜑𝜓) → 𝜒)
3 sylbida.2 . 2 ((𝜑𝜒) → 𝜃)
42, 3syldan 591 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fzdif1  13508  psdmul  22051  efrlim  26877  addsval  27874  mulscan2d  28087  dvdsruasso  33322  ssdifidlprm  33395  fsuppssind  42570  tfsconcat0i  43322  oadif1lem  43356  oadif1  43357  reabsifneg  43609  natglobalincr  46862  f1cof1b  47065  isubgr3stgrlem6  47959  prsthinc  49453
  Copyright terms: Public domain W3C validator