| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fzdif1 13573 psdmul 22060 efrlim 26886 addsval 27876 mulscan2d 28089 dvdsruasso 33363 ssdifidlprm 33436 fsuppssind 42588 tfsconcat0i 43341 oadif1lem 43375 oadif1 43376 reabsifneg 43628 natglobalincr 46882 f1cof1b 47082 isubgr3stgrlem6 47974 prsthinc 49457 |
| Copyright terms: Public domain | W3C validator |