Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbida | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
sylbida.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylbida | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbida.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | sylbida.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | syldan 590 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: addsval 34105 fsuppssind 40262 f1cof1b 44520 prsthinc 46287 |
Copyright terms: Public domain | W3C validator |