Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1cof1b Structured version   Visualization version   GIF version

Theorem f1cof1b 46992
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.)
Assertion
Ref Expression
f1cof1b ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))

Proof of Theorem f1cof1b
StepHypRef Expression
1 simp1 1136 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐵)
2 eqid 2740 . . . . . . . . 9 (ran 𝐹𝐶) = (ran 𝐹𝐶)
3 eqid 2740 . . . . . . . . 9 (𝐹𝐶) = (𝐹𝐶)
4 eqid 2740 . . . . . . . . 9 (𝐹 ↾ (𝐹𝐶)) = (𝐹 ↾ (𝐹𝐶))
5 simp2 1137 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐺:𝐶𝐷)
6 eqid 2740 . . . . . . . . 9 (𝐺 ↾ (ran 𝐹𝐶)) = (𝐺 ↾ (ran 𝐹𝐶))
7 simp3 1138 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ran 𝐹 = 𝐶)
81, 2, 3, 4, 5, 6, 7f1cof1blem 46989 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)))
9 simpll 766 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)) → (𝐹𝐶) = 𝐴)
10 f1eq2 6813 . . . . . . . 8 ((𝐹𝐶) = 𝐴 → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
118, 9, 103syl 18 . . . . . . 7 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
1211bicomd 223 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐺𝐹):(𝐹𝐶)–1-1𝐷))
13 ancom 460 . . . . . . . . . 10 (((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹) ↔ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺))
1413anbi2i 622 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) ↔ (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)))
158, 14sylibr 234 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)))
1615adantr 480 . . . . . . 7 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)))
171adantr 480 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → 𝐹:𝐴𝐵)
185adantr 480 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → 𝐺:𝐶𝐷)
19 simpr 484 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
2017, 2, 3, 4, 18, 6, 19fcoresf1 46984 . . . . . . . 8 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) ∧ (𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷))
2120ancomd 461 . . . . . . 7 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷 ∧ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶)))
22 simprl 770 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)
23 simpr 484 . . . . . . . . . . 11 (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) → (ran 𝐹𝐶) = 𝐶)
2423adantr 480 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (ran 𝐹𝐶) = 𝐶)
25 eqidd 2741 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → 𝐷 = 𝐷)
2622, 24, 25f1eq123d 6854 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷𝐺:𝐶1-1𝐷))
2726biimpd 229 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷𝐺:𝐶1-1𝐷))
28 simprr 772 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐹 ↾ (𝐹𝐶)) = 𝐹)
29 simpll 766 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐹𝐶) = 𝐴)
3028, 29, 24f1eq123d 6854 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) ↔ 𝐹:𝐴1-1𝐶))
3130biimpd 229 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶))
3227, 31anim12d 608 . . . . . . 7 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷 ∧ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶)) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
3316, 21, 32sylc 65 . . . . . 6 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶))
3412, 33sylbida 591 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶))
35 ffrn 6760 . . . . . . . . . . . 12 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
36 ax-1 6 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐵))
3735, 36impbid2 226 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹))
3837anbi1d 630 . . . . . . . . . 10 (𝐹:𝐴𝐵 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun 𝐹)))
39 df-f1 6578 . . . . . . . . . 10 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
40 df-f1 6578 . . . . . . . . . 10 (𝐹:𝐴1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun 𝐹))
4138, 39, 403bitr4g 314 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1→ran 𝐹))
42413ad2ant1 1133 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1→ran 𝐹))
43 f1eq3 6814 . . . . . . . . 9 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1→ran 𝐹𝐹:𝐴1-1𝐶))
44433ad2ant3 1135 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1→ran 𝐹𝐹:𝐴1-1𝐶))
4542, 44bitrd 279 . . . . . . 7 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1𝐶))
4645anbi2d 629 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) ↔ (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
4746adantr 480 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) ↔ (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
4834, 47mpbird 257 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵))
4948ancomd 461 . . 3 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷))
5049ex 412 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 → (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))
51 f1cof1 6827 . . . 4 ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
5251ancoms 458 . . 3 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
53 imaeq2 6085 . . . . . . . 8 (𝐶 = ran 𝐹 → (𝐹𝐶) = (𝐹 “ ran 𝐹))
54 cnvimarndm 6112 . . . . . . . 8 (𝐹 “ ran 𝐹) = dom 𝐹
5553, 54eqtrdi 2796 . . . . . . 7 (𝐶 = ran 𝐹 → (𝐹𝐶) = dom 𝐹)
5655eqcoms 2748 . . . . . 6 (ran 𝐹 = 𝐶 → (𝐹𝐶) = dom 𝐹)
57563ad2ant3 1135 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹𝐶) = dom 𝐹)
581fdmd 6757 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → dom 𝐹 = 𝐴)
5957, 58eqtrd 2780 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹𝐶) = 𝐴)
6059, 10syl 17 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
6152, 60imbitrid 244 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐺𝐹):𝐴1-1𝐷))
6250, 61impbid 212 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  cin 3975  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-fv 6581
This theorem is referenced by:  f1ocof1ob  46996
  Copyright terms: Public domain W3C validator