Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1cof1b Structured version   Visualization version   GIF version

Theorem f1cof1b 44456
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.)
Assertion
Ref Expression
f1cof1b ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))

Proof of Theorem f1cof1b
StepHypRef Expression
1 simp1 1134 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐵)
2 eqid 2738 . . . . . . . . 9 (ran 𝐹𝐶) = (ran 𝐹𝐶)
3 eqid 2738 . . . . . . . . 9 (𝐹𝐶) = (𝐹𝐶)
4 eqid 2738 . . . . . . . . 9 (𝐹 ↾ (𝐹𝐶)) = (𝐹 ↾ (𝐹𝐶))
5 simp2 1135 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐺:𝐶𝐷)
6 eqid 2738 . . . . . . . . 9 (𝐺 ↾ (ran 𝐹𝐶)) = (𝐺 ↾ (ran 𝐹𝐶))
7 simp3 1136 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ran 𝐹 = 𝐶)
81, 2, 3, 4, 5, 6, 7f1cof1blem 44455 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)))
9 simpll 763 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)) → (𝐹𝐶) = 𝐴)
10 f1eq2 6650 . . . . . . . 8 ((𝐹𝐶) = 𝐴 → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
118, 9, 103syl 18 . . . . . . 7 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
1211bicomd 222 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐺𝐹):(𝐹𝐶)–1-1𝐷))
13 ancom 460 . . . . . . . . . 10 (((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹) ↔ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺))
1413anbi2i 622 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) ↔ (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐹 ↾ (𝐹𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)))
158, 14sylibr 233 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)))
1615adantr 480 . . . . . . 7 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)))
171adantr 480 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → 𝐹:𝐴𝐵)
185adantr 480 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → 𝐺:𝐶𝐷)
19 simpr 484 . . . . . . . . 9 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
2017, 2, 3, 4, 18, 6, 19fcoresf1 44450 . . . . . . . 8 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) ∧ (𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷))
2120ancomd 461 . . . . . . 7 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷 ∧ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶)))
22 simprl 767 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐺 ↾ (ran 𝐹𝐶)) = 𝐺)
23 simpr 484 . . . . . . . . . . 11 (((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) → (ran 𝐹𝐶) = 𝐶)
2423adantr 480 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (ran 𝐹𝐶) = 𝐶)
25 eqidd 2739 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → 𝐷 = 𝐷)
2622, 24, 25f1eq123d 6692 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷𝐺:𝐶1-1𝐷))
2726biimpd 228 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷𝐺:𝐶1-1𝐷))
28 simprr 769 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐹 ↾ (𝐹𝐶)) = 𝐹)
29 simpll 763 . . . . . . . . . 10 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (𝐹𝐶) = 𝐴)
3028, 29, 24f1eq123d 6692 . . . . . . . . 9 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) ↔ 𝐹:𝐴1-1𝐶))
3130biimpd 228 . . . . . . . 8 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → ((𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶))
3227, 31anim12d 608 . . . . . . 7 ((((𝐹𝐶) = 𝐴 ∧ (ran 𝐹𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹𝐶)) = 𝐺 ∧ (𝐹 ↾ (𝐹𝐶)) = 𝐹)) → (((𝐺 ↾ (ran 𝐹𝐶)):(ran 𝐹𝐶)–1-1𝐷 ∧ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1→(ran 𝐹𝐶)) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
3316, 21, 32sylc 65 . . . . . 6 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):(𝐹𝐶)–1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶))
3412, 33sylbida 591 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶))
35 ffrn 6598 . . . . . . . . . . . 12 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
36 ax-1 6 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐵))
3735, 36impbid2 225 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹))
3837anbi1d 629 . . . . . . . . . 10 (𝐹:𝐴𝐵 → ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun 𝐹)))
39 df-f1 6423 . . . . . . . . . 10 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
40 df-f1 6423 . . . . . . . . . 10 (𝐹:𝐴1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun 𝐹))
4138, 39, 403bitr4g 313 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1→ran 𝐹))
42413ad2ant1 1131 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1→ran 𝐹))
43 f1eq3 6651 . . . . . . . . 9 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1→ran 𝐹𝐹:𝐴1-1𝐶))
44433ad2ant3 1133 . . . . . . . 8 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1→ran 𝐹𝐹:𝐴1-1𝐶))
4542, 44bitrd 278 . . . . . . 7 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1𝐶))
4645anbi2d 628 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) ↔ (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
4746adantr 480 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) ↔ (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐶)))
4834, 47mpbird 256 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵))
4948ancomd 461 . . 3 (((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺𝐹):𝐴1-1𝐷) → (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷))
5049ex 412 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 → (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))
51 f1cof1 6665 . . . 4 ((𝐺:𝐶1-1𝐷𝐹:𝐴1-1𝐵) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
5251ancoms 458 . . 3 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐺𝐹):(𝐹𝐶)–1-1𝐷)
53 imaeq2 5954 . . . . . . . 8 (𝐶 = ran 𝐹 → (𝐹𝐶) = (𝐹 “ ran 𝐹))
54 cnvimarndm 5979 . . . . . . . 8 (𝐹 “ ran 𝐹) = dom 𝐹
5553, 54eqtrdi 2795 . . . . . . 7 (𝐶 = ran 𝐹 → (𝐹𝐶) = dom 𝐹)
5655eqcoms 2746 . . . . . 6 (ran 𝐹 = 𝐶 → (𝐹𝐶) = dom 𝐹)
57563ad2ant3 1133 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹𝐶) = dom 𝐹)
581fdmd 6595 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → dom 𝐹 = 𝐴)
5957, 58eqtrd 2778 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹𝐶) = 𝐴)
6059, 10syl 17 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):(𝐹𝐶)–1-1𝐷 ↔ (𝐺𝐹):𝐴1-1𝐷))
6152, 60syl5ib 243 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐺𝐹):𝐴1-1𝐷))
6250, 61impbid 211 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  cin 3882  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Fun wfun 6412  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-fv 6426
This theorem is referenced by:  f1ocof1ob  44460
  Copyright terms: Public domain W3C validator