Proof of Theorem f1cof1b
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐵) |
2 | | eqid 2738 |
. . . . . . . . 9
⊢ (ran
𝐹 ∩ 𝐶) = (ran 𝐹 ∩ 𝐶) |
3 | | eqid 2738 |
. . . . . . . . 9
⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐹 ↾ (◡𝐹 “ 𝐶)) = (𝐹 ↾ (◡𝐹 “ 𝐶)) |
5 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐺:𝐶⟶𝐷) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) |
7 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ran 𝐹 = 𝐶) |
8 | 1, 2, 3, 4, 5, 6, 7 | f1cof1blem 44455 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺))) |
9 | | simpll 763 |
. . . . . . . 8
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺)) → (◡𝐹 “ 𝐶) = 𝐴) |
10 | | f1eq2 6650 |
. . . . . . . 8
⊢ ((◡𝐹 “ 𝐶) = 𝐴 → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷 ↔ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷)) |
11 | 8, 9, 10 | 3syl 18 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷 ↔ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷)) |
12 | 11 | bicomd 222 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷)) |
13 | | ancom 460 |
. . . . . . . . . 10
⊢ (((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹) ↔ ((𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺)) |
14 | 13 | anbi2i 622 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) ↔ (((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹 ∧ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺))) |
15 | 8, 14 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹))) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → (((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹))) |
17 | 1 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → 𝐹:𝐴⟶𝐵) |
18 | 5 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → 𝐺:𝐶⟶𝐷) |
19 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) |
20 | 17, 2, 3, 4, 18, 6,
19 | fcoresf1 44450 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → ((𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1→(ran 𝐹 ∩ 𝐶) ∧ (𝐺 ↾ (ran 𝐹 ∩ 𝐶)):(ran 𝐹 ∩ 𝐶)–1-1→𝐷)) |
21 | 20 | ancomd 461 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)):(ran 𝐹 ∩ 𝐶)–1-1→𝐷 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1→(ran 𝐹 ∩ 𝐶))) |
22 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → (𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺) |
23 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) → (ran 𝐹 ∩ 𝐶) = 𝐶) |
24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → (ran 𝐹 ∩ 𝐶) = 𝐶) |
25 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → 𝐷 = 𝐷) |
26 | 22, 24, 25 | f1eq123d 6692 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)):(ran 𝐹 ∩ 𝐶)–1-1→𝐷 ↔ 𝐺:𝐶–1-1→𝐷)) |
27 | 26 | biimpd 228 |
. . . . . . . 8
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)):(ran 𝐹 ∩ 𝐶)–1-1→𝐷 → 𝐺:𝐶–1-1→𝐷)) |
28 | | simprr 769 |
. . . . . . . . . 10
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹) |
29 | | simpll 763 |
. . . . . . . . . 10
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → (◡𝐹 “ 𝐶) = 𝐴) |
30 | 28, 29, 24 | f1eq123d 6692 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → ((𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1→(ran 𝐹 ∩ 𝐶) ↔ 𝐹:𝐴–1-1→𝐶)) |
31 | 30 | biimpd 228 |
. . . . . . . 8
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → ((𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1→(ran 𝐹 ∩ 𝐶) → 𝐹:𝐴–1-1→𝐶)) |
32 | 27, 31 | anim12d 608 |
. . . . . . 7
⊢ ((((◡𝐹 “ 𝐶) = 𝐴 ∧ (ran 𝐹 ∩ 𝐶) = 𝐶) ∧ ((𝐺 ↾ (ran 𝐹 ∩ 𝐶)) = 𝐺 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)) = 𝐹)) → (((𝐺 ↾ (ran 𝐹 ∩ 𝐶)):(ran 𝐹 ∩ 𝐶)–1-1→𝐷 ∧ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1→(ran 𝐹 ∩ 𝐶)) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐶))) |
33 | 16, 21, 32 | sylc 65 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐶)) |
34 | 12, 33 | sylbida 591 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐶)) |
35 | | ffrn 6598 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) |
36 | | ax-1 6 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:𝐴⟶ran 𝐹 → 𝐹:𝐴⟶𝐵)) |
37 | 35, 36 | impbid2 225 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶ran 𝐹)) |
38 | 37 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun ◡𝐹))) |
39 | | df-f1 6423 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
40 | | df-f1 6423 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1→ran 𝐹 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ Fun ◡𝐹)) |
41 | 38, 39, 40 | 3bitr4g 313 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→ran 𝐹)) |
42 | 41 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→ran 𝐹)) |
43 | | f1eq3 6651 |
. . . . . . . . 9
⊢ (ran
𝐹 = 𝐶 → (𝐹:𝐴–1-1→ran 𝐹 ↔ 𝐹:𝐴–1-1→𝐶)) |
44 | 43 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–1-1→ran 𝐹 ↔ 𝐹:𝐴–1-1→𝐶)) |
45 | 42, 44 | bitrd 278 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐶)) |
46 | 45 | anbi2d 628 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐵) ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐶))) |
47 | 46 | adantr 480 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷) → ((𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐵) ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐶))) |
48 | 34, 47 | mpbird 256 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐵)) |
49 | 48 | ancomd 461 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) ∧ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷) → (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷)) |
50 | 49 | ex 412 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 → (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) |
51 | | f1cof1 6665 |
. . . 4
⊢ ((𝐺:𝐶–1-1→𝐷 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) |
52 | 51 | ancoms 458 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷) |
53 | | imaeq2 5954 |
. . . . . . . 8
⊢ (𝐶 = ran 𝐹 → (◡𝐹 “ 𝐶) = (◡𝐹 “ ran 𝐹)) |
54 | | cnvimarndm 5979 |
. . . . . . . 8
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
55 | 53, 54 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝐶 = ran 𝐹 → (◡𝐹 “ 𝐶) = dom 𝐹) |
56 | 55 | eqcoms 2746 |
. . . . . 6
⊢ (ran
𝐹 = 𝐶 → (◡𝐹 “ 𝐶) = dom 𝐹) |
57 | 56 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (◡𝐹 “ 𝐶) = dom 𝐹) |
58 | 1 | fdmd 6595 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → dom 𝐹 = 𝐴) |
59 | 57, 58 | eqtrd 2778 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (◡𝐹 “ 𝐶) = 𝐴) |
60 | 59, 10 | syl 17 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1→𝐷 ↔ (𝐺 ∘ 𝐹):𝐴–1-1→𝐷)) |
61 | 52, 60 | syl5ib 243 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷) → (𝐺 ∘ 𝐹):𝐴–1-1→𝐷)) |
62 | 50, 61 | impbid 211 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) |