Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reabsifneg | Structured version Visualization version GIF version |
Description: Alternate expression for the absolute value of a real number. Lemma for sqrtcval 41559. (Contributed by RP, 11-May-2024.) |
Ref | Expression |
---|---|
reabsifneg | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11070 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | ltle 11156 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0)) | |
3 | 1, 2 | mpan2 688 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 → 𝐴 ≤ 0)) |
4 | 3 | imdistani 569 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 ∈ ℝ ∧ 𝐴 ≤ 0)) |
5 | absnid 15101 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (abs‘𝐴) = -𝐴) |
7 | 6 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 = (abs‘𝐴)) |
8 | 0red 11071 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
9 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
10 | 8, 9 | lenltd 11214 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
11 | 10 | bicomd 222 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ 0 ≤ 𝐴)) |
12 | absid 15099 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
13 | 11, 12 | sylbida 592 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 < 0) → (abs‘𝐴) = 𝐴) |
14 | 13 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 < 0) → 𝐴 = (abs‘𝐴)) |
15 | 7, 14 | ifeqda 4508 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 < 0, -𝐴, 𝐴) = (abs‘𝐴)) |
16 | 15 | eqcomd 2742 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ifcif 4472 class class class wbr 5089 ‘cfv 6473 ℝcr 10963 0cc0 10964 < clt 11102 ≤ cle 11103 -cneg 11299 abscabs 15036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 |
This theorem is referenced by: reabssgn 41554 sqrtcval 41559 |
Copyright terms: Public domain | W3C validator |