Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syldan | Structured version Visualization version GIF version |
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
Ref | Expression |
---|---|
syldan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
syldan.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syldan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | syldan.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | syldan.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Copyright terms: Public domain | W3C validator |