Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsruasso Structured version   Visualization version   GIF version

Theorem dvdsruasso 33363
Description: Two elements 𝑋 and 𝑌 of a ring 𝑅 are associates, i.e. each divides the other, iff they are unit multiples of each other. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
dvdsrspss.b 𝐵 = (Base‘𝑅)
dvdsrspss.k 𝐾 = (RSpan‘𝑅)
dvdsrspss.d = (∥r𝑅)
dvdsrspss.x (𝜑𝑋𝐵)
dvdsrspss.y (𝜑𝑌𝐵)
dvdsruassoi.1 𝑈 = (Unit‘𝑅)
dvdsruassoi.2 · = (.r𝑅)
dvdsruasso.r (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
dvdsruasso (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Distinct variable groups:   𝑢, ·   𝑢,   𝑢,𝐵   𝑢,𝑅   𝑢,𝑈   𝑢,𝑋   𝑢,𝑌   𝜑,𝑢
Allowed substitution hint:   𝐾(𝑢)

Proof of Theorem dvdsruasso
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrspss.b . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsrspss.d . . . . . 6 = (∥r𝑅)
3 dvdsruassoi.2 . . . . . 6 · = (.r𝑅)
41, 2, 3dvdsr 20278 . . . . 5 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
5 dvdsrspss.x . . . . . 6 (𝜑𝑋𝐵)
65biantrurd 532 . . . . 5 (𝜑 → (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌)))
74, 6bitr4id 290 . . . 4 (𝜑 → (𝑋 𝑌 ↔ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
81, 2, 3dvdsr 20278 . . . . 5 (𝑌 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
9 dvdsrspss.y . . . . . 6 (𝜑𝑌𝐵)
109biantrurd 532 . . . . 5 (𝜑 → (∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
118, 10bitr4id 290 . . . 4 (𝜑 → (𝑌 𝑋 ↔ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
127, 11anbi12d 632 . . 3 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
13 dvdsruasso.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ IDomn)
1413idomringd 20644 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
15 dvdsruassoi.1 . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
16 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
1715, 161unit 20290 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
1814, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑅) ∈ 𝑈)
1918ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (1r𝑅) ∈ 𝑈)
20 oveq1 7397 . . . . . . . . . . . . . 14 (𝑢 = (1r𝑅) → (𝑢 · 𝑋) = ((1r𝑅) · 𝑋))
2120eqeq1d 2732 . . . . . . . . . . . . 13 (𝑢 = (1r𝑅) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2221adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) ∧ 𝑢 = (1r𝑅)) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2314ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑅 ∈ Ring)
245ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋𝐵)
251, 3, 16, 23, 24ringlidmd 20188 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋 = (0g𝑅))
2726oveq2d 7406 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = (𝑡 · (0g𝑅)))
28 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
29 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑡𝐵)
30 eqid 2730 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
311, 3, 30ringrz 20210 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑡𝐵) → (𝑡 · (0g𝑅)) = (0g𝑅))
3223, 29, 31syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · (0g𝑅)) = (0g𝑅))
3327, 28, 323eqtr3rd 2774 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (0g𝑅) = 𝑌)
3425, 26, 333eqtrd 2769 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑌)
3519, 22, 34rspcedvd 3593 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
36 isidom 20641 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3713, 36sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
3938ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ CRing)
40 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑠𝐵)
41 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝐵)
4214ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ Ring)
431, 3, 42, 40, 41ringcld 20176 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝐵)
441, 16ringidcl 20181 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4542, 44syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
465ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋𝐵)
47 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ≠ (0g𝑅))
48 eldifsn 4753 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐵 ∖ {(0g𝑅)}) ↔ (𝑋𝐵𝑋 ≠ (0g𝑅)))
4946, 47, 48sylanbrc 583 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ∈ (𝐵 ∖ {(0g𝑅)}))
5013ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ IDomn)
51 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
5251oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = (𝑠 · 𝑌))
53 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑌) = 𝑋)
5452, 53eqtrd 2765 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = 𝑋)
551, 3, 42, 40, 41, 46ringassd 20173 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = (𝑠 · (𝑡 · 𝑋)))
561, 3, 16, 42, 46ringlidmd 20188 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
5754, 55, 563eqtr4d 2775 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = ((1r𝑅) · 𝑋))
581, 30, 3, 43, 45, 49, 50, 57idomrcan 33236 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) = (1r𝑅))
5942, 17syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝑈)
6058, 59eqeltrd 2829 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝑈)
6115, 3, 1unitmulclb 20297 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) → ((𝑠 · 𝑡) ∈ 𝑈 ↔ (𝑠𝑈𝑡𝑈)))
6261simplbda 499 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) ∧ (𝑠 · 𝑡) ∈ 𝑈) → 𝑡𝑈)
6339, 40, 41, 60, 62syl31anc 1375 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝑈)
64 oveq1 7397 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 · 𝑋) = (𝑡 · 𝑋))
6564eqeq1d 2732 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6665adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) ∧ 𝑢 = 𝑡) → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6763, 66, 51rspcedvd 3593 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6835, 67pm2.61dane 3013 . . . . . . . . . 10 (((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6968r19.29an 3138 . . . . . . . . 9 ((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7069an32s 652 . . . . . . . 8 ((((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7170ex 412 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7271an32s 652 . . . . . 6 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7372imp 406 . . . . 5 ((((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7473r19.29an 3138 . . . 4 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7574anasss 466 . . 3 ((𝜑 ∧ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7612, 75sylbida 592 . 2 ((𝜑 ∧ (𝑋 𝑌𝑌 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
77 dvdsrspss.k . . . 4 𝐾 = (RSpan‘𝑅)
785ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋𝐵)
799ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑌𝐵)
8014ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring)
81 simplr 768 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝑈)
82 simpr 484 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌)
831, 77, 2, 78, 79, 15, 3, 80, 81, 82dvdsruassoi 33362 . . 3 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8483r19.29an 3138 . 2 ((𝜑 ∧ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8576, 84impbida 800 1 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  Unitcui 20271  Domncdomn 20608  IDomncidom 20609  RSpancrsp 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-domn 20611  df-idom 20612
This theorem is referenced by:  dvdsruasso2  33364  rprmasso3  33505
  Copyright terms: Public domain W3C validator