Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsruasso Structured version   Visualization version   GIF version

Theorem dvdsruasso 33348
Description: Two elements 𝑋 and 𝑌 of a ring 𝑅 are associates, i.e. each divides the other, iff they are unit multiples of each other. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
dvdsrspss.b 𝐵 = (Base‘𝑅)
dvdsrspss.k 𝐾 = (RSpan‘𝑅)
dvdsrspss.d = (∥r𝑅)
dvdsrspss.x (𝜑𝑋𝐵)
dvdsrspss.y (𝜑𝑌𝐵)
dvdsruassoi.1 𝑈 = (Unit‘𝑅)
dvdsruassoi.2 · = (.r𝑅)
dvdsruasso.r (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
dvdsruasso (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Distinct variable groups:   𝑢, ·   𝑢,   𝑢,𝐵   𝑢,𝑅   𝑢,𝑈   𝑢,𝑋   𝑢,𝑌   𝜑,𝑢
Allowed substitution hint:   𝐾(𝑢)

Proof of Theorem dvdsruasso
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrspss.b . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsrspss.d . . . . . 6 = (∥r𝑅)
3 dvdsruassoi.2 . . . . . 6 · = (.r𝑅)
41, 2, 3dvdsr 20281 . . . . 5 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
5 dvdsrspss.x . . . . . 6 (𝜑𝑋𝐵)
65biantrurd 532 . . . . 5 (𝜑 → (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌)))
74, 6bitr4id 290 . . . 4 (𝜑 → (𝑋 𝑌 ↔ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
81, 2, 3dvdsr 20281 . . . . 5 (𝑌 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
9 dvdsrspss.y . . . . . 6 (𝜑𝑌𝐵)
109biantrurd 532 . . . . 5 (𝜑 → (∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
118, 10bitr4id 290 . . . 4 (𝜑 → (𝑌 𝑋 ↔ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
127, 11anbi12d 632 . . 3 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
13 dvdsruasso.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ IDomn)
1413idomringd 20644 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
15 dvdsruassoi.1 . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
16 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
1715, 161unit 20293 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
1814, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑅) ∈ 𝑈)
1918ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (1r𝑅) ∈ 𝑈)
20 oveq1 7353 . . . . . . . . . . . . . 14 (𝑢 = (1r𝑅) → (𝑢 · 𝑋) = ((1r𝑅) · 𝑋))
2120eqeq1d 2733 . . . . . . . . . . . . 13 (𝑢 = (1r𝑅) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2221adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) ∧ 𝑢 = (1r𝑅)) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2314ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑅 ∈ Ring)
245ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋𝐵)
251, 3, 16, 23, 24ringlidmd 20191 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋 = (0g𝑅))
2726oveq2d 7362 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = (𝑡 · (0g𝑅)))
28 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
29 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑡𝐵)
30 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
311, 3, 30ringrz 20213 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑡𝐵) → (𝑡 · (0g𝑅)) = (0g𝑅))
3223, 29, 31syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · (0g𝑅)) = (0g𝑅))
3327, 28, 323eqtr3rd 2775 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (0g𝑅) = 𝑌)
3425, 26, 333eqtrd 2770 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑌)
3519, 22, 34rspcedvd 3579 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
36 isidom 20641 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3713, 36sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
3938ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ CRing)
40 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑠𝐵)
41 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝐵)
4214ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ Ring)
431, 3, 42, 40, 41ringcld 20179 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝐵)
441, 16ringidcl 20184 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4542, 44syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
465ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋𝐵)
47 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ≠ (0g𝑅))
48 eldifsn 4738 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐵 ∖ {(0g𝑅)}) ↔ (𝑋𝐵𝑋 ≠ (0g𝑅)))
4946, 47, 48sylanbrc 583 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ∈ (𝐵 ∖ {(0g𝑅)}))
5013ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ IDomn)
51 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
5251oveq2d 7362 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = (𝑠 · 𝑌))
53 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑌) = 𝑋)
5452, 53eqtrd 2766 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = 𝑋)
551, 3, 42, 40, 41, 46ringassd 20176 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = (𝑠 · (𝑡 · 𝑋)))
561, 3, 16, 42, 46ringlidmd 20191 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
5754, 55, 563eqtr4d 2776 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = ((1r𝑅) · 𝑋))
581, 30, 3, 43, 45, 49, 50, 57idomrcan 33243 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) = (1r𝑅))
5942, 17syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝑈)
6058, 59eqeltrd 2831 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝑈)
6115, 3, 1unitmulclb 20300 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) → ((𝑠 · 𝑡) ∈ 𝑈 ↔ (𝑠𝑈𝑡𝑈)))
6261simplbda 499 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) ∧ (𝑠 · 𝑡) ∈ 𝑈) → 𝑡𝑈)
6339, 40, 41, 60, 62syl31anc 1375 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝑈)
64 oveq1 7353 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 · 𝑋) = (𝑡 · 𝑋))
6564eqeq1d 2733 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6665adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) ∧ 𝑢 = 𝑡) → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6763, 66, 51rspcedvd 3579 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6835, 67pm2.61dane 3015 . . . . . . . . . 10 (((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6968r19.29an 3136 . . . . . . . . 9 ((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7069an32s 652 . . . . . . . 8 ((((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7170ex 412 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7271an32s 652 . . . . . 6 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7372imp 406 . . . . 5 ((((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7473r19.29an 3136 . . . 4 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7574anasss 466 . . 3 ((𝜑 ∧ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7612, 75sylbida 592 . 2 ((𝜑 ∧ (𝑋 𝑌𝑌 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
77 dvdsrspss.k . . . 4 𝐾 = (RSpan‘𝑅)
785ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋𝐵)
799ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑌𝐵)
8014ad2antrr 726 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring)
81 simplr 768 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝑈)
82 simpr 484 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌)
831, 77, 2, 78, 79, 15, 3, 80, 81, 82dvdsruassoi 33347 . . 3 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8483r19.29an 3136 . 2 ((𝜑 ∧ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8576, 84impbida 800 1 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3899  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  1rcur 20100  Ringcrg 20152  CRingccrg 20153  rcdsr 20273  Unitcui 20274  Domncdomn 20608  IDomncidom 20609  RSpancrsp 21145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-nzr 20429  df-domn 20611  df-idom 20612
This theorem is referenced by:  dvdsruasso2  33349  rprmasso3  33490
  Copyright terms: Public domain W3C validator