Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsruasso Structured version   Visualization version   GIF version

Theorem dvdsruasso 33114
Description: Two elements 𝑋 and 𝑌 of a ring 𝑅 are associates, i.e. each divides the other, iff they are unit multiples of each other. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
dvdsrspss.b 𝐵 = (Base‘𝑅)
dvdsrspss.k 𝐾 = (RSpan‘𝑅)
dvdsrspss.d = (∥r𝑅)
dvdsrspss.x (𝜑𝑋𝐵)
dvdsrspss.y (𝜑𝑌𝐵)
dvdsruassoi.1 𝑈 = (Unit‘𝑅)
dvdsruassoi.2 · = (.r𝑅)
dvdsruasso.r (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
dvdsruasso (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Distinct variable groups:   𝑢, ·   𝑢,   𝑢,𝐵   𝑢,𝑅   𝑢,𝑈   𝑢,𝑋   𝑢,𝑌   𝜑,𝑢
Allowed substitution hint:   𝐾(𝑢)

Proof of Theorem dvdsruasso
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrspss.b . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsrspss.d . . . . . 6 = (∥r𝑅)
3 dvdsruassoi.2 . . . . . 6 · = (.r𝑅)
41, 2, 3dvdsr 20308 . . . . 5 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
5 dvdsrspss.x . . . . . 6 (𝜑𝑋𝐵)
65biantrurd 531 . . . . 5 (𝜑 → (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌)))
74, 6bitr4id 289 . . . 4 (𝜑 → (𝑋 𝑌 ↔ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
81, 2, 3dvdsr 20308 . . . . 5 (𝑌 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
9 dvdsrspss.y . . . . . 6 (𝜑𝑌𝐵)
109biantrurd 531 . . . . 5 (𝜑 → (∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
118, 10bitr4id 289 . . . 4 (𝜑 → (𝑌 𝑋 ↔ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
127, 11anbi12d 630 . . 3 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
13 dvdsruasso.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ IDomn)
1413idomringd 21264 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
15 dvdsruassoi.1 . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
16 eqid 2728 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
1715, 161unit 20320 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
1814, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑅) ∈ 𝑈)
1918ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (1r𝑅) ∈ 𝑈)
20 oveq1 7433 . . . . . . . . . . . . . 14 (𝑢 = (1r𝑅) → (𝑢 · 𝑋) = ((1r𝑅) · 𝑋))
2120eqeq1d 2730 . . . . . . . . . . . . 13 (𝑢 = (1r𝑅) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2221adantl 480 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) ∧ 𝑢 = (1r𝑅)) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2314ad5antr 732 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑅 ∈ Ring)
245ad5antr 732 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋𝐵)
251, 3, 16, 23, 24ringlidmd 20215 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
26 simpr 483 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋 = (0g𝑅))
2726oveq2d 7442 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = (𝑡 · (0g𝑅)))
28 simplr 767 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
29 simpllr 774 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑡𝐵)
30 eqid 2728 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
311, 3, 30ringrz 20237 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑡𝐵) → (𝑡 · (0g𝑅)) = (0g𝑅))
3223, 29, 31syl2anc 582 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · (0g𝑅)) = (0g𝑅))
3327, 28, 323eqtr3rd 2777 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (0g𝑅) = 𝑌)
3425, 26, 333eqtrd 2772 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑌)
3519, 22, 34rspcedvd 3613 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
36 isidom 21261 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3713, 36sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3837simpld 493 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
3938ad5antr 732 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ CRing)
40 simp-5r 784 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑠𝐵)
41 simpllr 774 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝐵)
425ad5antr 732 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋𝐵)
43 simpr 483 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ≠ (0g𝑅))
44 eldifsn 4795 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐵 ∖ {(0g𝑅)}) ↔ (𝑋𝐵𝑋 ≠ (0g𝑅)))
4542, 43, 44sylanbrc 581 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ∈ (𝐵 ∖ {(0g𝑅)}))
4614ad5antr 732 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ Ring)
471, 3, 46, 40, 41ringcld 20206 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝐵)
481, 16ringidcl 20209 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4946, 48syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
5013ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ IDomn)
51 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
5251oveq2d 7442 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = (𝑠 · 𝑌))
53 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑌) = 𝑋)
5452, 53eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = 𝑋)
551, 3, 46, 40, 41, 42ringassd 20204 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = (𝑠 · (𝑡 · 𝑋)))
561, 3, 16, 46, 42ringlidmd 20215 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
5754, 55, 563eqtr4d 2778 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = ((1r𝑅) · 𝑋))
581, 30, 3, 45, 47, 49, 50, 57idomrcan 32972 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) = (1r𝑅))
5946, 17syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝑈)
6058, 59eqeltrd 2829 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝑈)
6115, 3, 1unitmulclb 20327 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) → ((𝑠 · 𝑡) ∈ 𝑈 ↔ (𝑠𝑈𝑡𝑈)))
6261simplbda 498 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) ∧ (𝑠 · 𝑡) ∈ 𝑈) → 𝑡𝑈)
6339, 40, 41, 60, 62syl31anc 1370 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝑈)
64 oveq1 7433 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 · 𝑋) = (𝑡 · 𝑋))
6564eqeq1d 2730 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6665adantl 480 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) ∧ 𝑢 = 𝑡) → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6763, 66, 51rspcedvd 3613 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6835, 67pm2.61dane 3026 . . . . . . . . . 10 (((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6968r19.29an 3155 . . . . . . . . 9 ((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7069an32s 650 . . . . . . . 8 ((((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7170ex 411 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7271an32s 650 . . . . . 6 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7372imp 405 . . . . 5 ((((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7473r19.29an 3155 . . . 4 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7574anasss 465 . . 3 ((𝜑 ∧ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7612, 75sylbida 590 . 2 ((𝜑 ∧ (𝑋 𝑌𝑌 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
77 dvdsrspss.k . . . 4 𝐾 = (RSpan‘𝑅)
785ad2antrr 724 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋𝐵)
799ad2antrr 724 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑌𝐵)
8014ad2antrr 724 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring)
81 simplr 767 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝑈)
82 simpr 483 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌)
831, 77, 2, 78, 79, 15, 3, 80, 81, 82dvdsruassoi 33113 . . 3 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8483r19.29an 3155 . 2 ((𝜑 ∧ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8576, 84impbida 799 1 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wrex 3067  cdif 3946  {csn 4632   class class class wbr 5152  cfv 6553  (class class class)co 7426  Basecbs 17187  .rcmulr 17241  0gc0g 17428  1rcur 20128  Ringcrg 20180  CRingccrg 20181  rcdsr 20300  Unitcui 20301  RSpancrsp 21110  Domncdomn 21234  IDomncidom 21235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-sbg 18902  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-nzr 20459  df-domn 21238  df-idom 21239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator