| Step | Hyp | Ref
| Expression |
| 1 | | df-adds 27993 |
. . 3
⊢
+s = norec2 ((𝑥
∈ V, 𝑎 ∈ V
↦ (({𝑦 ∣
∃𝑙 ∈ ( L
‘(1st ‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) |
| 2 | 1 | norec2ov 27990 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = (〈𝐴, 𝐵〉(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})))) |
| 3 | | opex 5469 |
. . . 4
⊢
〈𝐴, 𝐵〉 ∈ V |
| 4 | | addsfn 27994 |
. . . . . 6
⊢
+s Fn ( No × No ) |
| 5 | | fnfun 6668 |
. . . . . 6
⊢ (
+s Fn ( No × No ) → Fun +s ) |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun
+s |
| 7 | | fvex 6919 |
. . . . . . . . 9
⊢ ( L
‘𝐴) ∈
V |
| 8 | | fvex 6919 |
. . . . . . . . 9
⊢ ( R
‘𝐴) ∈
V |
| 9 | 7, 8 | unex 7764 |
. . . . . . . 8
⊢ (( L
‘𝐴) ∪ ( R
‘𝐴)) ∈
V |
| 10 | | snex 5436 |
. . . . . . . 8
⊢ {𝐴} ∈ V |
| 11 | 9, 10 | unex 7764 |
. . . . . . 7
⊢ ((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) ∈ V |
| 12 | | fvex 6919 |
. . . . . . . . 9
⊢ ( L
‘𝐵) ∈
V |
| 13 | | fvex 6919 |
. . . . . . . . 9
⊢ ( R
‘𝐵) ∈
V |
| 14 | 12, 13 | unex 7764 |
. . . . . . . 8
⊢ (( L
‘𝐵) ∪ ( R
‘𝐵)) ∈
V |
| 15 | | snex 5436 |
. . . . . . . 8
⊢ {𝐵} ∈ V |
| 16 | 14, 15 | unex 7764 |
. . . . . . 7
⊢ ((( L
‘𝐵) ∪ ( R
‘𝐵)) ∪ {𝐵}) ∈ V |
| 17 | 11, 16 | xpex 7773 |
. . . . . 6
⊢ (((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∈ V |
| 18 | 17 | difexi 5330 |
. . . . 5
⊢ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ∈ V |
| 19 | | resfunexg 7235 |
. . . . 5
⊢ ((Fun
+s ∧ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ∈ V) → ( +s
↾ ((((( L ‘𝐴)
∪ ( R ‘𝐴)) ∪
{𝐴}) × ((( L
‘𝐵) ∪ ( R
‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) ∈ V) |
| 20 | 6, 18, 19 | mp2an 692 |
. . . 4
⊢ (
+s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) ∈ V |
| 21 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ( L ‘(1st
‘𝑥)) = ( L
‘(1st ‘〈𝐴, 𝐵〉))) |
| 22 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
| 23 | 22 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑙𝑎(2nd ‘𝑥)) = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))) |
| 24 | 23 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑦 = (𝑙𝑎(2nd ‘𝑥)) ↔ 𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉)))) |
| 25 | 21, 24 | rexeqbidv 3347 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥)) ↔ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉)))) |
| 26 | 25 | abbidv 2808 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))}) |
| 27 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ( L ‘(2nd
‘𝑥)) = ( L
‘(2nd ‘〈𝐴, 𝐵〉))) |
| 28 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
| 29 | 28 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((1st ‘𝑥)𝑎𝑙) = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)) |
| 30 | 29 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑧 = ((1st ‘𝑥)𝑎𝑙) ↔ 𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙))) |
| 31 | 27, 30 | rexeqbidv 3347 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙) ↔ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙))) |
| 32 | 31 | abbidv 2808 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)}) |
| 33 | 26, 32 | uneq12d 4169 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)})) |
| 34 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ( R ‘(1st
‘𝑥)) = ( R
‘(1st ‘〈𝐴, 𝐵〉))) |
| 35 | 22 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑟𝑎(2nd ‘𝑥)) = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))) |
| 36 | 35 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑦 = (𝑟𝑎(2nd ‘𝑥)) ↔ 𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉)))) |
| 37 | 34, 36 | rexeqbidv 3347 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥)) ↔ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉)))) |
| 38 | 37 | abbidv 2808 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))}) |
| 39 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ( R ‘(2nd
‘𝑥)) = ( R
‘(2nd ‘〈𝐴, 𝐵〉))) |
| 40 | 28 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((1st ‘𝑥)𝑎𝑟) = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)) |
| 41 | 40 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑧 = ((1st ‘𝑥)𝑎𝑟) ↔ 𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟))) |
| 42 | 39, 41 | rexeqbidv 3347 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟) ↔ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟))) |
| 43 | 42 | abbidv 2808 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)}) |
| 44 | 38, 43 | uneq12d 4169 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)})) |
| 45 | 33, 44 | oveq12d 7449 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)}))) |
| 46 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉)) = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))) |
| 47 | 46 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)))) |
| 48 | 47 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉)) ↔ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)))) |
| 49 | 48 | abbidv 2808 |
. . . . . . 7
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))}) |
| 50 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → ((1st
‘〈𝐴, 𝐵〉)𝑎𝑙) = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)) |
| 51 | 50 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙) ↔ 𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙))) |
| 52 | 51 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙) ↔ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙))) |
| 53 | 52 | abbidv 2808 |
. . . . . . 7
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |
| 54 | 49, 53 | uneq12d 4169 |
. . . . . 6
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)})) |
| 55 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉)) = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))) |
| 56 | 55 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)))) |
| 57 | 56 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉)) ↔ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)))) |
| 58 | 57 | abbidv 2808 |
. . . . . . 7
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))}) |
| 59 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → ((1st
‘〈𝐴, 𝐵〉)𝑎𝑟) = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)) |
| 60 | 59 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟) ↔ 𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟))) |
| 61 | 60 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟) ↔ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟))) |
| 62 | 61 | abbidv 2808 |
. . . . . . 7
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)}) |
| 63 | 58, 62 | uneq12d 4169 |
. . . . . 6
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)})) |
| 64 | 54, 63 | oveq12d 7449 |
. . . . 5
⊢ (𝑎 = ( +s ↾ (((((
L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟𝑎(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)𝑎𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)}))) |
| 65 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)}))) = (𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)}))) |
| 66 | | ovex 7464 |
. . . . 5
⊢ (({𝑦 ∣ ∃𝑙 ∈ ( L
‘(1st ‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)})) ∈ V |
| 67 | 45, 64, 65, 66 | ovmpo 7593 |
. . . 4
⊢
((〈𝐴, 𝐵〉 ∈ V ∧ (
+s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) ∈ V) → (〈𝐴, 𝐵〉(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)}))) |
| 68 | 3, 20, 67 | mp2an 692 |
. . 3
⊢
(〈𝐴, 𝐵〉(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)})) |
| 69 | | op1stg 8026 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 70 | 69 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( L ‘(1st
‘〈𝐴, 𝐵〉)) = ( L ‘𝐴)) |
| 71 | 70 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉)) ↔ 𝑙 ∈ ( L ‘𝐴))) |
| 72 | | op2ndg 8027 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 74 | 73 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵)) |
| 75 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ ( L ‘𝐴) → 𝑙 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 76 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ ( L ‘𝐴) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 79 | | snidg 4660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈
No → 𝐵 ∈
{𝐵}) |
| 80 | | elun2 4183 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ {𝐵} → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈
No → 𝐵 ∈
((( L ‘𝐵) ∪ ( R
‘𝐵)) ∪ {𝐵})) |
| 82 | 81 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 84 | 78, 83 | opelxpd 5724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 〈𝑙, 𝐵〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
| 85 | | leftirr 27929 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝐴 ∈ ( L ‘𝐴) |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ¬ 𝐴 ∈ ( L ‘𝐴)) |
| 87 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐴 → (𝑙 ∈ ( L ‘𝐴) ↔ 𝐴 ∈ ( L ‘𝐴))) |
| 88 | 87 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐴 → (¬ 𝑙 ∈ ( L ‘𝐴) ↔ ¬ 𝐴 ∈ ( L ‘𝐴))) |
| 89 | 86, 88 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 = 𝐴 → ¬ 𝑙 ∈ ( L ‘𝐴))) |
| 90 | 89 | necon2ad 2955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 ∈ ( L ‘𝐴) → 𝑙 ≠ 𝐴)) |
| 91 | 90 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙 ≠ 𝐴) |
| 92 | 91 | orcd 874 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵)) |
| 93 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙 ∈ ( L ‘𝐴)) |
| 94 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝐵 ∈ No
) |
| 95 | | opthneg 5486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝐵 ∈ No )
→ (〈𝑙, 𝐵〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵))) |
| 96 | 93, 94, 95 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (〈𝑙, 𝐵〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵))) |
| 97 | 92, 96 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 〈𝑙, 𝐵〉 ≠ 〈𝐴, 𝐵〉) |
| 98 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢
(〈𝑙, 𝐵〉 ∈ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ↔ (〈𝑙, 𝐵〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ 〈𝑙, 𝐵〉 ≠ 〈𝐴, 𝐵〉)) |
| 99 | 84, 97, 98 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 〈𝑙, 𝐵〉 ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 100 | 99 | fvresd 6926 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝑙, 𝐵〉) = ( +s ‘〈𝑙, 𝐵〉)) |
| 101 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑙( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵) = (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝑙, 𝐵〉) |
| 102 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑙 +s 𝐵) = ( +s ‘〈𝑙, 𝐵〉) |
| 103 | 100, 101,
102 | 3eqtr4g 2802 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵) = (𝑙 +s 𝐵)) |
| 104 | 74, 103 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) = (𝑙 +s 𝐵)) |
| 105 | 104 | eqeq2d 2748 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑙 +s 𝐵))) |
| 106 | 71, 105 | sylbida 592 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))) → (𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑙 +s 𝐵))) |
| 107 | 70, 106 | rexeqbidva 3333 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵))) |
| 108 | 107 | abbidv 2808 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)}) |
| 109 | 72 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( L ‘(2nd
‘〈𝐴, 𝐵〉)) = ( L ‘𝐵)) |
| 110 | 109 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉)) ↔ 𝑙 ∈ ( L ‘𝐵))) |
| 111 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 112 | 111 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) = (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)) |
| 113 | | snidg 4660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈
No → 𝐴 ∈
{𝐴}) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → 𝐴 ∈ {𝐴}) |
| 115 | | elun2 4183 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 116 | 114, 115 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 118 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ ( L ‘𝐵) → 𝑙 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 119 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ ( L ‘𝐵) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 121 | 120 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 122 | 117, 121 | opelxpd 5724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 〈𝐴, 𝑙〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
| 123 | | leftirr 27929 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝐵 ∈ ( L ‘𝐵) |
| 124 | 123 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ¬ 𝐵 ∈ ( L ‘𝐵)) |
| 125 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐵 → (𝑙 ∈ ( L ‘𝐵) ↔ 𝐵 ∈ ( L ‘𝐵))) |
| 126 | 125 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐵 → (¬ 𝑙 ∈ ( L ‘𝐵) ↔ ¬ 𝐵 ∈ ( L ‘𝐵))) |
| 127 | 124, 126 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 = 𝐵 → ¬ 𝑙 ∈ ( L ‘𝐵))) |
| 128 | 127 | necon2ad 2955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑙 ∈ ( L ‘𝐵) → 𝑙 ≠ 𝐵)) |
| 129 | 128 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝑙 ≠ 𝐵) |
| 130 | 129 | olcd 875 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵)) |
| 131 | | opthneg 5486 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
No ∧ 𝑙 ∈ (
L ‘𝐵)) →
(〈𝐴, 𝑙〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵))) |
| 132 | 131 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (〈𝐴, 𝑙〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵))) |
| 133 | 130, 132 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 〈𝐴, 𝑙〉 ≠ 〈𝐴, 𝐵〉) |
| 134 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢
(〈𝐴, 𝑙〉 ∈ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ↔ (〈𝐴, 𝑙〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ 〈𝐴, 𝑙〉 ≠ 〈𝐴, 𝐵〉)) |
| 135 | 122, 133,
134 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 〈𝐴, 𝑙〉 ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 136 | 135 | fvresd 6926 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝐴, 𝑙〉) = ( +s ‘〈𝐴, 𝑙〉)) |
| 137 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝐴( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) = (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝐴, 𝑙〉) |
| 138 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝐴 +s 𝑙) = ( +s
‘〈𝐴, 𝑙〉) |
| 139 | 136, 137,
138 | 3eqtr4g 2802 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) = (𝐴 +s 𝑙)) |
| 140 | 112, 139 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) = (𝐴 +s 𝑙)) |
| 141 | 140 | eqeq2d 2748 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) ↔ 𝑧 = (𝐴 +s 𝑙))) |
| 142 | 110, 141 | sylbida 592 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))) → (𝑧 = ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) ↔ 𝑧 = (𝐴 +s 𝑙))) |
| 143 | 109, 142 | rexeqbidva 3333 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙))) |
| 144 | 143 | abbidv 2808 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |
| 145 | 108, 144 | uneq12d 4169 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)})) |
| 146 | 69 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( R ‘(1st
‘〈𝐴, 𝐵〉)) = ( R ‘𝐴)) |
| 147 | 146 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉)) ↔ 𝑟 ∈ ( R ‘𝐴))) |
| 148 | 72 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 149 | 148 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵)) |
| 150 | | elun2 4183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ( R ‘𝐴) → 𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 151 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 152 | 150, 151 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ( R ‘𝐴) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 153 | 152 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 154 | 82 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 155 | 153, 154 | opelxpd 5724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 〈𝑟, 𝐵〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
| 156 | | rightirr 27930 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝐴 ∈ ( R ‘𝐴) |
| 157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ¬ 𝐴 ∈ ( R ‘𝐴)) |
| 158 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝐴 → (𝑟 ∈ ( R ‘𝐴) ↔ 𝐴 ∈ ( R ‘𝐴))) |
| 159 | 158 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝐴 → (¬ 𝑟 ∈ ( R ‘𝐴) ↔ ¬ 𝐴 ∈ ( R ‘𝐴))) |
| 160 | 157, 159 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘𝐴))) |
| 161 | 160 | necon2ad 2955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 ∈ ( R ‘𝐴) → 𝑟 ≠ 𝐴)) |
| 162 | 161 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟 ≠ 𝐴) |
| 163 | 162 | orcd 874 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵)) |
| 164 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟 ∈ ( R ‘𝐴)) |
| 165 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝐵 ∈ No
) |
| 166 | | opthneg 5486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝐵 ∈ No )
→ (〈𝑟, 𝐵〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵))) |
| 167 | 164, 165,
166 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (〈𝑟, 𝐵〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵))) |
| 168 | 163, 167 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 〈𝑟, 𝐵〉 ≠ 〈𝐴, 𝐵〉) |
| 169 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢
(〈𝑟, 𝐵〉 ∈ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ↔ (〈𝑟, 𝐵〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ 〈𝑟, 𝐵〉 ≠ 〈𝐴, 𝐵〉)) |
| 170 | 155, 168,
169 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 〈𝑟, 𝐵〉 ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 171 | 170 | fvresd 6926 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝑟, 𝐵〉) = ( +s ‘〈𝑟, 𝐵〉)) |
| 172 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑟( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵) = (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝑟, 𝐵〉) |
| 173 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝑟 +s 𝐵) = ( +s ‘〈𝑟, 𝐵〉) |
| 174 | 171, 172,
173 | 3eqtr4g 2802 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝐵) = (𝑟 +s 𝐵)) |
| 175 | 149, 174 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) = (𝑟 +s 𝐵)) |
| 176 | 175 | eqeq2d 2748 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑟 +s 𝐵))) |
| 177 | 147, 176 | sylbida 592 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))) → (𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ 𝑦 = (𝑟 +s 𝐵))) |
| 178 | 146, 177 | rexeqbidva 3333 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉)) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵))) |
| 179 | 178 | abbidv 2808 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)}) |
| 180 | 72 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( R ‘(2nd
‘〈𝐴, 𝐵〉)) = ( R ‘𝐵)) |
| 181 | 180 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉)) ↔ 𝑟 ∈ ( R ‘𝐵))) |
| 182 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 183 | 182 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) = (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)) |
| 184 | 114 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝐴 ∈ {𝐴}) |
| 185 | 184, 115 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 186 | | elun2 4183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ( R ‘𝐵) → 𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 187 | 186 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 188 | | elun1 4182 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑟 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 189 | 187, 188 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 190 | 185, 189 | opelxpd 5724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 〈𝐴, 𝑟〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
| 191 | | rightirr 27930 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝐵 ∈ ( R ‘𝐵) |
| 192 | 191 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ¬ 𝐵 ∈ ( R ‘𝐵)) |
| 193 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝐵 → (𝑟 ∈ ( R ‘𝐵) ↔ 𝐵 ∈ ( R ‘𝐵))) |
| 194 | 193 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝐵 → (¬ 𝑟 ∈ ( R ‘𝐵) ↔ ¬ 𝐵 ∈ ( R ‘𝐵))) |
| 195 | 192, 194 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 = 𝐵 → ¬ 𝑟 ∈ ( R ‘𝐵))) |
| 196 | 195 | necon2ad 2955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑟 ∈ ( R ‘𝐵) → 𝑟 ≠ 𝐵)) |
| 197 | 196 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟 ≠ 𝐵) |
| 198 | 197 | olcd 875 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵)) |
| 199 | | opthneg 5486 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
No ∧ 𝑟 ∈ (
R ‘𝐵)) →
(〈𝐴, 𝑟〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵))) |
| 200 | 199 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (〈𝐴, 𝑟〉 ≠ 〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵))) |
| 201 | 198, 200 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 〈𝐴, 𝑟〉 ≠ 〈𝐴, 𝐵〉) |
| 202 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢
(〈𝐴, 𝑟〉 ∈ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) ↔ (〈𝐴, 𝑟〉 ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ 〈𝐴, 𝑟〉 ≠ 〈𝐴, 𝐵〉)) |
| 203 | 190, 201,
202 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 〈𝐴, 𝑟〉 ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 204 | 203 | fvresd 6926 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝐴, 𝑟〉) = ( +s ‘〈𝐴, 𝑟〉)) |
| 205 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝐴( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) = (( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))‘〈𝐴, 𝑟〉) |
| 206 | | df-ov 7434 |
. . . . . . . . . . 11
⊢ (𝐴 +s 𝑟) = ( +s
‘〈𝐴, 𝑟〉) |
| 207 | 204, 205,
206 | 3eqtr4g 2802 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) = (𝐴 +s 𝑟)) |
| 208 | 183, 207 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) = (𝐴 +s 𝑟)) |
| 209 | 208 | eqeq2d 2748 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) ↔ 𝑧 = (𝐴 +s 𝑟))) |
| 210 | 181, 209 | sylbida 592 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))) → (𝑧 = ((1st
‘〈𝐴, 𝐵〉)( +s ↾
((((( L ‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) ↔ 𝑧 = (𝐴 +s 𝑟))) |
| 211 | 180, 210 | rexeqbidva 3333 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟))) |
| 212 | 211 | abbidv 2808 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}) |
| 213 | 179, 212 | uneq12d 4169 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})) |
| 214 | 145, 213 | oveq12d 7449 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘〈𝐴, 𝐵〉))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))(2nd ‘〈𝐴, 𝐵〉))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘〈𝐴, 𝐵〉))𝑧 = ((1st ‘〈𝐴, 𝐵〉)( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) |
| 215 | 68, 214 | eqtrid 2789 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (〈𝐴, 𝐵〉(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))( +s ↾ ((((( L
‘𝐴) ∪ ( R
‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) |
| 216 | 2, 215 | eqtrd 2777 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) |