Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addsval Structured version   Visualization version   GIF version

Theorem addsval 34126
Description: The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsval ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})))
Distinct variable groups:   𝐴,𝑙,𝑟,𝑦,𝑧   𝐵,𝑙,𝑟,𝑦,𝑧

Proof of Theorem addsval
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-adds 34119 . . 3 +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))))
21norec2ov 34114 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (⟨𝐴, 𝐵⟩(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})))( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))))
3 opex 5379 . . . 4 𝐴, 𝐵⟩ ∈ V
4 addsfn 34125 . . . . . 6 +s Fn ( No × No )
5 fnfun 6533 . . . . . 6 ( +s Fn ( No × No ) → Fun +s )
64, 5ax-mp 5 . . . . 5 Fun +s
7 fvex 6787 . . . . . . . . 9 ( L ‘𝐴) ∈ V
8 fvex 6787 . . . . . . . . 9 ( R ‘𝐴) ∈ V
97, 8unex 7596 . . . . . . . 8 (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V
10 snex 5354 . . . . . . . 8 {𝐴} ∈ V
119, 10unex 7596 . . . . . . 7 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) ∈ V
12 fvex 6787 . . . . . . . . 9 ( L ‘𝐵) ∈ V
13 fvex 6787 . . . . . . . . 9 ( R ‘𝐵) ∈ V
1412, 13unex 7596 . . . . . . . 8 (( L ‘𝐵) ∪ ( R ‘𝐵)) ∈ V
15 snex 5354 . . . . . . . 8 {𝐵} ∈ V
1614, 15unex 7596 . . . . . . 7 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}) ∈ V
1711, 16xpex 7603 . . . . . 6 (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∈ V
1817difexi 5252 . . . . 5 ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ∈ V
19 resfunexg 7091 . . . . 5 ((Fun +s ∧ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ∈ V) → ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V)
206, 18, 19mp2an 689 . . . 4 ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V
21 2fveq3 6779 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ( L ‘(1st𝑥)) = ( L ‘(1st ‘⟨𝐴, 𝐵⟩)))
22 fveq2 6774 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
2322oveq2d 7291 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑙𝑎(2nd𝑥)) = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩)))
2423eqeq2d 2749 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑦 = (𝑙𝑎(2nd𝑥)) ↔ 𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))))
2521, 24rexeqbidv 3337 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥)) ↔ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))))
2625abbidv 2807 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))})
27 2fveq3 6779 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ( L ‘(2nd𝑥)) = ( L ‘(2nd ‘⟨𝐴, 𝐵⟩)))
28 fveq2 6774 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
2928oveq1d 7290 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)𝑎𝑙) = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙))
3029eqeq2d 2749 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑧 = ((1st𝑥)𝑎𝑙) ↔ 𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)))
3127, 30rexeqbidv 3337 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙) ↔ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)))
3231abbidv 2807 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)})
3326, 32uneq12d 4098 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)}))
34 2fveq3 6779 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ( R ‘(1st𝑥)) = ( R ‘(1st ‘⟨𝐴, 𝐵⟩)))
3522oveq2d 7291 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑟𝑎(2nd𝑥)) = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩)))
3635eqeq2d 2749 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑦 = (𝑟𝑎(2nd𝑥)) ↔ 𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))))
3734, 36rexeqbidv 3337 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥)) ↔ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))))
3837abbidv 2807 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))})
39 2fveq3 6779 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ( R ‘(2nd𝑥)) = ( R ‘(2nd ‘⟨𝐴, 𝐵⟩)))
4028oveq1d 7290 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)𝑎𝑟) = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟))
4140eqeq2d 2749 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑧 = ((1st𝑥)𝑎𝑟) ↔ 𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)))
4239, 41rexeqbidv 3337 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟) ↔ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)))
4342abbidv 2807 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)})
4438, 43uneq12d 4098 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)}))
4533, 44oveq12d 7293 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)})))
46 oveq 7281 . . . . . . . . . 10 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)))
4746eqeq2d 2749 . . . . . . . . 9 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))))
4847rexbidv 3226 . . . . . . . 8 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩)) ↔ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))))
4948abbidv 2807 . . . . . . 7 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))})
50 oveq 7281 . . . . . . . . . 10 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙) = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙))
5150eqeq2d 2749 . . . . . . . . 9 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙) ↔ 𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)))
5251rexbidv 3226 . . . . . . . 8 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙) ↔ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)))
5352abbidv 2807 . . . . . . 7 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)})
5449, 53uneq12d 4098 . . . . . 6 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}))
55 oveq 7281 . . . . . . . . . 10 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)))
5655eqeq2d 2749 . . . . . . . . 9 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))))
5756rexbidv 3226 . . . . . . . 8 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩)) ↔ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))))
5857abbidv 2807 . . . . . . 7 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))})
59 oveq 7281 . . . . . . . . . 10 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟) = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟))
6059eqeq2d 2749 . . . . . . . . 9 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟) ↔ 𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)))
6160rexbidv 3226 . . . . . . . 8 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟) ↔ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)))
6261abbidv 2807 . . . . . . 7 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)})
6358, 62uneq12d 4098 . . . . . 6 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)}))
6454, 63oveq12d 7293 . . . . 5 (𝑎 = ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟𝑎(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)𝑎𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)})))
65 eqid 2738 . . . . 5 (𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))) = (𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})))
66 ovex 7308 . . . . 5 (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)})) ∈ V
6745, 64, 65, 66ovmpo 7433 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V) → (⟨𝐴, 𝐵⟩(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})))( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)})))
683, 20, 67mp2an 689 . . 3 (⟨𝐴, 𝐵⟩(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})))( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)}))
69 op1stg 7843 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
7069fveq2d 6778 . . . . . . 7 ((𝐴 No 𝐵 No ) → ( L ‘(1st ‘⟨𝐴, 𝐵⟩)) = ( L ‘𝐴))
7170eleq2d 2824 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩)) ↔ 𝑙 ∈ ( L ‘𝐴)))
72 op2ndg 7844 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
7372adantr 481 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
7473oveq2d 7291 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
75 elun1 4110 . . . . . . . . . . . . . . . 16 (𝑙 ∈ ( L ‘𝐴) → 𝑙 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
76 elun1 4110 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝑙 ∈ ( L ‘𝐴) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
7877adantl 482 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
79 snidg 4595 . . . . . . . . . . . . . . . . 17 (𝐵 No 𝐵 ∈ {𝐵})
80 elun2 4111 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ {𝐵} → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
8179, 80syl 17 . . . . . . . . . . . . . . . 16 (𝐵 No 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
8281adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 No 𝐵 No ) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
8382adantr 481 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
8478, 83opelxpd 5627 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → ⟨𝑙, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
85 leftirr 34073 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ ( L ‘𝐴)
8685a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → ¬ 𝐴 ∈ ( L ‘𝐴))
87 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐴 → (𝑙 ∈ ( L ‘𝐴) ↔ 𝐴 ∈ ( L ‘𝐴)))
8887notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐴 → (¬ 𝑙 ∈ ( L ‘𝐴) ↔ ¬ 𝐴 ∈ ( L ‘𝐴)))
8986, 88syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → (𝑙 = 𝐴 → ¬ 𝑙 ∈ ( L ‘𝐴)))
9089necon2ad 2958 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝐵 No ) → (𝑙 ∈ ( L ‘𝐴) → 𝑙𝐴))
9190imp 407 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙𝐴)
9291orcd 870 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙𝐴𝐵𝐵))
93 simpr 485 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝑙 ∈ ( L ‘𝐴))
94 simplr 766 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → 𝐵 No )
95 opthneg 5396 . . . . . . . . . . . . . . 15 ((𝑙 ∈ ( L ‘𝐴) ∧ 𝐵 No ) → (⟨𝑙, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑙𝐴𝐵𝐵)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (⟨𝑙, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑙𝐴𝐵𝐵)))
9792, 96mpbird 256 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → ⟨𝑙, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
98 eldifsn 4720 . . . . . . . . . . . . 13 (⟨𝑙, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ↔ (⟨𝑙, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ ⟨𝑙, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩))
9984, 97, 98sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → ⟨𝑙, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
10099fvresd 6794 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑙, 𝐵⟩) = ( +s ‘⟨𝑙, 𝐵⟩))
101 df-ov 7278 . . . . . . . . . . 11 (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑙, 𝐵⟩)
102 df-ov 7278 . . . . . . . . . . 11 (𝑙 +s 𝐵) = ( +s ‘⟨𝑙, 𝐵⟩)
103100, 101, 1023eqtr4g 2803 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑙 +s 𝐵))
10474, 103eqtrd 2778 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑙 +s 𝐵))
105104eqeq2d 2749 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐴)) → (𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑙 +s 𝐵)))
10671, 105sylbida 592 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))) → (𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑙 +s 𝐵)))
10770, 106rexeqbidva 3355 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)))
108107abbidv 2807 . . . . 5 ((𝐴 No 𝐵 No ) → {𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)})
10972fveq2d 6778 . . . . . . 7 ((𝐴 No 𝐵 No ) → ( L ‘(2nd ‘⟨𝐴, 𝐵⟩)) = ( L ‘𝐵))
110109eleq2d 2824 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑙 ∈ ( L ‘𝐵)))
11169adantr 481 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
112111oveq1d 7290 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) = (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙))
113 snidg 4595 . . . . . . . . . . . . . . . . 17 (𝐴 No 𝐴 ∈ {𝐴})
114113adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝐵 No ) → 𝐴 ∈ {𝐴})
115 elun2 4111 . . . . . . . . . . . . . . . 16 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
116114, 115syl 17 . . . . . . . . . . . . . . 15 ((𝐴 No 𝐵 No ) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
117116adantr 481 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
118 elun1 4110 . . . . . . . . . . . . . . . 16 (𝑙 ∈ ( L ‘𝐵) → 𝑙 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
119 elun1 4110 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
120118, 119syl 17 . . . . . . . . . . . . . . 15 (𝑙 ∈ ( L ‘𝐵) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
121120adantl 482 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝑙 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
122117, 121opelxpd 5627 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ⟨𝐴, 𝑙⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
123 leftirr 34073 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐵 ∈ ( L ‘𝐵)
124123a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → ¬ 𝐵 ∈ ( L ‘𝐵))
125 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐵 → (𝑙 ∈ ( L ‘𝐵) ↔ 𝐵 ∈ ( L ‘𝐵)))
126125notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐵 → (¬ 𝑙 ∈ ( L ‘𝐵) ↔ ¬ 𝐵 ∈ ( L ‘𝐵)))
127124, 126syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → (𝑙 = 𝐵 → ¬ 𝑙 ∈ ( L ‘𝐵)))
128127necon2ad 2958 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝐵 No ) → (𝑙 ∈ ( L ‘𝐵) → 𝑙𝐵))
129128imp 407 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → 𝑙𝐵)
130129olcd 871 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝐴𝐴𝑙𝐵))
131 opthneg 5396 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑙 ∈ ( L ‘𝐵)) → (⟨𝐴, 𝑙⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑙𝐵)))
132131adantlr 712 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (⟨𝐴, 𝑙⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑙𝐵)))
133130, 132mpbird 256 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ⟨𝐴, 𝑙⟩ ≠ ⟨𝐴, 𝐵⟩)
134 eldifsn 4720 . . . . . . . . . . . . 13 (⟨𝐴, 𝑙⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ↔ (⟨𝐴, 𝑙⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ ⟨𝐴, 𝑙⟩ ≠ ⟨𝐴, 𝐵⟩))
135122, 133, 134sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ⟨𝐴, 𝑙⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
136135fvresd 6794 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑙⟩) = ( +s ‘⟨𝐴, 𝑙⟩))
137 df-ov 7278 . . . . . . . . . . 11 (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) = (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑙⟩)
138 df-ov 7278 . . . . . . . . . . 11 (𝐴 +s 𝑙) = ( +s ‘⟨𝐴, 𝑙⟩)
139136, 137, 1383eqtr4g 2803 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) = (𝐴 +s 𝑙))
140112, 139eqtrd 2778 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) = (𝐴 +s 𝑙))
141140eqeq2d 2749 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘𝐵)) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) ↔ 𝑧 = (𝐴 +s 𝑙)))
142110, 141sylbida 592 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) ↔ 𝑧 = (𝐴 +s 𝑙)))
143109, 142rexeqbidva 3355 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)))
144143abbidv 2807 . . . . 5 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)} = {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)})
145108, 144uneq12d 4098 . . . 4 ((𝐴 No 𝐵 No ) → ({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) = ({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}))
14669fveq2d 6778 . . . . . . 7 ((𝐴 No 𝐵 No ) → ( R ‘(1st ‘⟨𝐴, 𝐵⟩)) = ( R ‘𝐴))
147146eleq2d 2824 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩)) ↔ 𝑟 ∈ ( R ‘𝐴)))
14872adantr 481 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
149148oveq2d 7291 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
150 elun2 4111 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ( R ‘𝐴) → 𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
151 elun1 4110 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
152150, 151syl 17 . . . . . . . . . . . . . . 15 (𝑟 ∈ ( R ‘𝐴) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
153152adantl 482 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
15482adantr 481 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
155153, 154opelxpd 5627 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → ⟨𝑟, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
156 rightirr 34074 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ ( R ‘𝐴)
157156a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → ¬ 𝐴 ∈ ( R ‘𝐴))
158 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐴 → (𝑟 ∈ ( R ‘𝐴) ↔ 𝐴 ∈ ( R ‘𝐴)))
159158notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝐴 → (¬ 𝑟 ∈ ( R ‘𝐴) ↔ ¬ 𝐴 ∈ ( R ‘𝐴)))
160157, 159syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → (𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘𝐴)))
161160necon2ad 2958 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝐵 No ) → (𝑟 ∈ ( R ‘𝐴) → 𝑟𝐴))
162161imp 407 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟𝐴)
163162orcd 870 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟𝐴𝐵𝐵))
164 simpr 485 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝑟 ∈ ( R ‘𝐴))
165 simplr 766 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → 𝐵 No )
166 opthneg 5396 . . . . . . . . . . . . . . 15 ((𝑟 ∈ ( R ‘𝐴) ∧ 𝐵 No ) → (⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝐵𝐵)))
167164, 165, 166syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝐵𝐵)))
168163, 167mpbird 256 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → ⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
169 eldifsn 4720 . . . . . . . . . . . . 13 (⟨𝑟, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ↔ (⟨𝑟, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ ⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩))
170155, 168, 169sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → ⟨𝑟, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
171170fvresd 6794 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝐵⟩) = ( +s ‘⟨𝑟, 𝐵⟩))
172 df-ov 7278 . . . . . . . . . . 11 (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝐵⟩)
173 df-ov 7278 . . . . . . . . . . 11 (𝑟 +s 𝐵) = ( +s ‘⟨𝑟, 𝐵⟩)
174171, 172, 1733eqtr4g 2803 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑟 +s 𝐵))
175149, 174eqtrd 2778 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) = (𝑟 +s 𝐵))
176175eqeq2d 2749 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐴)) → (𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑟 +s 𝐵)))
177147, 176sylbida 592 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))) → (𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑦 = (𝑟 +s 𝐵)))
178146, 177rexeqbidva 3355 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩)) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)))
179178abbidv 2807 . . . . 5 ((𝐴 No 𝐵 No ) → {𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)})
18072fveq2d 6778 . . . . . . 7 ((𝐴 No 𝐵 No ) → ( R ‘(2nd ‘⟨𝐴, 𝐵⟩)) = ( R ‘𝐵))
181180eleq2d 2824 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩)) ↔ 𝑟 ∈ ( R ‘𝐵)))
18269adantr 481 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
183182oveq1d 7290 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) = (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟))
184114adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝐴 ∈ {𝐴})
185184, 115syl 17 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
186 elun2 4111 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ( R ‘𝐵) → 𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
187186adantl 482 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
188 elun1 4110 . . . . . . . . . . . . . . 15 (𝑟 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑟 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
189187, 188syl 17 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
190185, 189opelxpd 5627 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ⟨𝐴, 𝑟⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
191 rightirr 34074 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐵 ∈ ( R ‘𝐵)
192191a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → ¬ 𝐵 ∈ ( R ‘𝐵))
193 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐵 → (𝑟 ∈ ( R ‘𝐵) ↔ 𝐵 ∈ ( R ‘𝐵)))
194193notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝐵 → (¬ 𝑟 ∈ ( R ‘𝐵) ↔ ¬ 𝐵 ∈ ( R ‘𝐵)))
195192, 194syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → (𝑟 = 𝐵 → ¬ 𝑟 ∈ ( R ‘𝐵)))
196195necon2ad 2958 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝐵 No ) → (𝑟 ∈ ( R ‘𝐵) → 𝑟𝐵))
197196imp 407 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → 𝑟𝐵)
198197olcd 871 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝐴𝐴𝑟𝐵))
199 opthneg 5396 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑟 ∈ ( R ‘𝐵)) → (⟨𝐴, 𝑟⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑟𝐵)))
200199adantlr 712 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (⟨𝐴, 𝑟⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑟𝐵)))
201198, 200mpbird 256 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ⟨𝐴, 𝑟⟩ ≠ ⟨𝐴, 𝐵⟩)
202 eldifsn 4720 . . . . . . . . . . . . 13 (⟨𝐴, 𝑟⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ↔ (⟨𝐴, 𝑟⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∧ ⟨𝐴, 𝑟⟩ ≠ ⟨𝐴, 𝐵⟩))
203190, 201, 202sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ⟨𝐴, 𝑟⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
204203fvresd 6794 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑟⟩) = ( +s ‘⟨𝐴, 𝑟⟩))
205 df-ov 7278 . . . . . . . . . . 11 (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) = (( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑟⟩)
206 df-ov 7278 . . . . . . . . . . 11 (𝐴 +s 𝑟) = ( +s ‘⟨𝐴, 𝑟⟩)
207204, 205, 2063eqtr4g 2803 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝐴( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) = (𝐴 +s 𝑟))
208183, 207eqtrd 2778 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) = (𝐴 +s 𝑟))
209208eqeq2d 2749 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘𝐵)) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) ↔ 𝑧 = (𝐴 +s 𝑟)))
210181, 209sylbida 592 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))) → (𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) ↔ 𝑧 = (𝐴 +s 𝑟)))
211180, 210rexeqbidva 3355 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)))
212211abbidv 2807 . . . . 5 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)} = {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})
213179, 212uneq12d 4098 . . . 4 ((𝐴 No 𝐵 No ) → ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)}) = ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))
214145, 213oveq12d 7293 . . 3 ((𝐴 No 𝐵 No ) → (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑙( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘⟨𝐴, 𝐵⟩))𝑦 = (𝑟( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))(2nd ‘⟨𝐴, 𝐵⟩))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘⟨𝐴, 𝐵⟩))𝑧 = ((1st ‘⟨𝐴, 𝐵⟩)( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑟)})) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})))
21568, 214eqtrid 2790 . 2 ((𝐴 No 𝐵 No ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)})))( +s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})))
2162, 215eqtrd 2778 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  {csn 4561  cop 4567   × cxp 5587  cres 5591  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830   No csur 33843   |s cscut 33977   L cleft 34029   R cright 34030   +s cadds 34116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-left 34034  df-right 34035  df-norec2 34106  df-adds 34119
This theorem is referenced by:  addsid1  34127  addscom  34129  addscllem1  34131
  Copyright terms: Public domain W3C validator