Proof of Theorem tfsconcat0i
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → 𝐴 = ∅) |
| 2 | | fnrel 6640 |
. . . . . . . . . . 11
⊢ (𝐴 Fn 𝐶 → Rel 𝐴) |
| 3 | | reldm0 5907 |
. . . . . . . . . . 11
⊢ (Rel
𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| 5 | | fndm 6641 |
. . . . . . . . . . 11
⊢ (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶) |
| 6 | 5 | eqeq1d 2737 |
. . . . . . . . . 10
⊢ (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅)) |
| 7 | 4, 6 | bitrd 279 |
. . . . . . . . 9
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
| 8 | 7 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
| 9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → 𝐵 Fn 𝐷) |
| 10 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On) |
| 11 | 9, 10 | anim12i 613 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 Fn 𝐷 ∧ 𝐷 ∈ On)) |
| 12 | 11 | anim1i 615 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐶 = ∅) → ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅)) |
| 13 | 8, 12 | sylbida 592 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅)) |
| 14 | | oveq1 7412 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → (𝐶 +o 𝐷) = (∅ +o 𝐷)) |
| 15 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → 𝐶 = ∅) |
| 16 | 14, 15 | difeq12d 4102 |
. . . . . . . . . . . 12
⊢ (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = ((∅ +o 𝐷) ∖
∅)) |
| 17 | | dif0 4353 |
. . . . . . . . . . . 12
⊢ ((∅
+o 𝐷) ∖
∅) = (∅ +o 𝐷) |
| 18 | 16, 17 | eqtrdi 2786 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = (∅ +o 𝐷)) |
| 19 | 18 | eleq2d 2820 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝑥 ∈ (∅ +o 𝐷))) |
| 20 | | oveq1 7412 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → (𝐶 +o 𝑧) = (∅ +o 𝑧)) |
| 21 | 20 | eqeq2d 2746 |
. . . . . . . . . . . 12
⊢ (𝐶 = ∅ → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (∅ +o 𝑧))) |
| 22 | 21 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 23 | 22 | rexbidv 3164 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 24 | 19, 23 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝐶 = ∅ → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))))) |
| 25 | | oa0r 8550 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ On → (∅
+o 𝐷) = 𝐷) |
| 26 | 25 | eleq2d 2820 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (𝑥 ∈ (∅ +o
𝐷) ↔ 𝑥 ∈ 𝐷)) |
| 27 | | onelon 6377 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
| 28 | | oa0r 8550 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (∅
+o 𝑧) = 𝑧) |
| 29 | 28 | eqeq2d 2746 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑥 = (∅ +o 𝑧) ↔ 𝑥 = 𝑧)) |
| 30 | 29 | anbi1d 631 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 31 | 27, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 32 | 31 | rexbidva 3162 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 33 | 26, 32 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝐷 ∈ On → ((𝑥 ∈ (∅ +o
𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))))) |
| 34 | | df-rex 3061 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧 ∈
𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧(𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 35 | | an12 645 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 = 𝑧 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 36 | | eqcom 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
| 37 | 36 | anbi1i 624 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑧 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 38 | 35, 37 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 39 | 38 | exbii 1848 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧(𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
| 40 | | eleq1w 2817 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐷 ↔ 𝑥 ∈ 𝐷)) |
| 41 | | fveq2 6876 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → (𝐵‘𝑧) = (𝐵‘𝑥)) |
| 42 | 41 | eqeq2d 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑥))) |
| 43 | 40, 42 | anbi12d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥)))) |
| 44 | 43 | equsexvw 2004 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧(𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥))) |
| 45 | 34, 39, 44 | 3bitri 297 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑧 ∈
𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥))) |
| 46 | 45 | baib 535 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑥))) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑥))) |
| 48 | | eqcom 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐵‘𝑥) ↔ (𝐵‘𝑥) = 𝑦) |
| 49 | 47, 48 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝐵‘𝑥) = 𝑦)) |
| 50 | | fnbrfvb 6929 |
. . . . . . . . . . . . 13
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐵‘𝑥) = 𝑦 ↔ 𝑥𝐵𝑦)) |
| 51 | 49, 50 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑥𝐵𝑦)) |
| 52 | 51 | pm5.32da 579 |
. . . . . . . . . . 11
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦))) |
| 53 | | fnbr 6646 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥𝐵𝑦) → 𝑥 ∈ 𝐷) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 → 𝑥 ∈ 𝐷)) |
| 55 | 54 | pm4.71rd 562 |
. . . . . . . . . . . 12
⊢ (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦))) |
| 56 | | df-br 5120 |
. . . . . . . . . . . 12
⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| 57 | 55, 56 | bitr3di 286 |
. . . . . . . . . . 11
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 58 | 52, 57 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 59 | 33, 58 | sylan9bbr 510 |
. . . . . . . . 9
⊢ ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 60 | 24, 59 | sylan9bbr 510 |
. . . . . . . 8
⊢ (((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 61 | 60 | opabbidv 5185 |
. . . . . . 7
⊢ (((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵}) |
| 62 | 13, 61 | syl 17 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵}) |
| 63 | | fnrel 6640 |
. . . . . . . . 9
⊢ (𝐵 Fn 𝐷 → Rel 𝐵) |
| 64 | | opabid2 5807 |
. . . . . . . . 9
⊢ (Rel
𝐵 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵} = 𝐵) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝐵 Fn 𝐷 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵} = 𝐵) |
| 66 | 65 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵} = 𝐵) |
| 67 | 66 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐵} = 𝐵) |
| 68 | 62, 67 | eqtrd 2770 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = 𝐵) |
| 69 | 1, 68 | uneq12d 4144 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (∅ ∪ 𝐵)) |
| 70 | | 0un 4371 |
. . . 4
⊢ (∅
∪ 𝐵) = 𝐵 |
| 71 | 69, 70 | eqtrdi 2786 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵) |
| 72 | 71 | ex 412 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵)) |
| 73 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 74 | 73 | tfsconcatun 43361 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 75 | 74 | eqeq1d 2737 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵)) |
| 76 | 72, 75 | sylibrd 259 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) |