Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat0i Structured version   Visualization version   GIF version

Theorem tfsconcat0i 43452
Description: The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat0i (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat0i
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 fnrel 6591 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → Rel 𝐴)
3 reldm0 5875 . . . . . . . . . . 11 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
42, 3syl 17 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
5 fndm 6592 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶)
65eqeq1d 2735 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅))
74, 6bitrd 279 . . . . . . . . 9 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅))
87ad2antrr 726 . . . . . . . 8 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ ↔ 𝐶 = ∅))
9 simpr 484 . . . . . . . . . 10 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → 𝐵 Fn 𝐷)
10 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
119, 10anim12i 613 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 Fn 𝐷𝐷 ∈ On))
1211anim1i 615 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐶 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
138, 12sylbida 592 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
14 oveq1 7362 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝐷) = (∅ +o 𝐷))
15 id 22 . . . . . . . . . . . . 13 (𝐶 = ∅ → 𝐶 = ∅)
1614, 15difeq12d 4078 . . . . . . . . . . . 12 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = ((∅ +o 𝐷) ∖ ∅))
17 dif0 4329 . . . . . . . . . . . 12 ((∅ +o 𝐷) ∖ ∅) = (∅ +o 𝐷)
1816, 17eqtrdi 2784 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = (∅ +o 𝐷))
1918eleq2d 2819 . . . . . . . . . 10 (𝐶 = ∅ → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝑥 ∈ (∅ +o 𝐷)))
20 oveq1 7362 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝑧) = (∅ +o 𝑧))
2120eqeq2d 2744 . . . . . . . . . . . 12 (𝐶 = ∅ → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (∅ +o 𝑧)))
2221anbi1d 631 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2322rexbidv 3158 . . . . . . . . . 10 (𝐶 = ∅ → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2419, 23anbi12d 632 . . . . . . . . 9 (𝐶 = ∅ → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))))
25 oa0r 8462 . . . . . . . . . . . 12 (𝐷 ∈ On → (∅ +o 𝐷) = 𝐷)
2625eleq2d 2819 . . . . . . . . . . 11 (𝐷 ∈ On → (𝑥 ∈ (∅ +o 𝐷) ↔ 𝑥𝐷))
27 onelon 6339 . . . . . . . . . . . . 13 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
28 oa0r 8462 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (∅ +o 𝑧) = 𝑧)
2928eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑥 = (∅ +o 𝑧) ↔ 𝑥 = 𝑧))
3029anbi1d 631 . . . . . . . . . . . . 13 (𝑧 ∈ On → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3127, 30syl 17 . . . . . . . . . . . 12 ((𝐷 ∈ On ∧ 𝑧𝐷) → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3231rexbidva 3156 . . . . . . . . . . 11 (𝐷 ∈ On → (∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3326, 32anbi12d 632 . . . . . . . . . 10 (𝐷 ∈ On → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)))))
34 df-rex 3059 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ ∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
35 an12 645 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
36 eqcom 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧𝑧 = 𝑥)
3736anbi1i 624 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3835, 37bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3938exbii 1849 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
40 eleq1w 2816 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑧𝐷𝑥𝐷))
41 fveq2 6831 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐵𝑧) = (𝐵𝑥))
4241eqeq2d 2744 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑥)))
4340, 42anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → ((𝑧𝐷𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥))))
4443equsexvw 2006 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4534, 39, 443bitri 297 . . . . . . . . . . . . . . . 16 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4645baib 535 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
4746adantl 481 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
48 eqcom 2740 . . . . . . . . . . . . . 14 (𝑦 = (𝐵𝑥) ↔ (𝐵𝑥) = 𝑦)
4947, 48bitrdi 287 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝐵𝑥) = 𝑦))
50 fnbrfvb 6881 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → ((𝐵𝑥) = 𝑦𝑥𝐵𝑦))
5149, 50bitrd 279 . . . . . . . . . . . 12 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑥𝐵𝑦))
5251pm5.32da 579 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑥𝐵𝑦)))
53 fnbr 6597 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐵𝑦) → 𝑥𝐷)
5453ex 412 . . . . . . . . . . . . 13 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦𝑥𝐷))
5554pm4.71rd 562 . . . . . . . . . . . 12 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦)))
56 df-br 5096 . . . . . . . . . . . 12 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
5755, 56bitr3di 286 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷𝑥𝐵𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5852, 57bitrd 279 . . . . . . . . . 10 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5933, 58sylan9bbr 510 . . . . . . . . 9 ((𝐵 Fn 𝐷𝐷 ∈ On) → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6024, 59sylan9bbr 510 . . . . . . . 8 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6160opabbidv 5161 . . . . . . 7 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
6213, 61syl 17 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
63 fnrel 6591 . . . . . . . . 9 (𝐵 Fn 𝐷 → Rel 𝐵)
64 opabid2 5775 . . . . . . . . 9 (Rel 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6563, 64syl 17 . . . . . . . 8 (𝐵 Fn 𝐷 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6665adantl 481 . . . . . . 7 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6766ad2antrr 726 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6862, 67eqtrd 2768 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = 𝐵)
691, 68uneq12d 4120 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (∅ ∪ 𝐵))
70 0un 4347 . . . 4 (∅ ∪ 𝐵) = 𝐵
7169, 70eqtrdi 2784 . . 3 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵)
7271ex 412 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
73 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
7473tfsconcatun 43444 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
7574eqeq1d 2735 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
7672, 75sylibrd 259 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3058  Vcvv 3438  cdif 3896  cun 3897  c0 4284  cop 4583   class class class wbr 5095  {copab 5157  dom cdm 5621  Rel wrel 5626  Oncon0 6314   Fn wfn 6484  cfv 6489  (class class class)co 7355  cmpo 7357   +o coa 8391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-oadd 8398
This theorem is referenced by:  tfsconcat0b  43453
  Copyright terms: Public domain W3C validator