Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat0i Structured version   Visualization version   GIF version

Theorem tfsconcat0i 42398
Description: The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat0i (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat0i
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 fnrel 6651 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → Rel 𝐴)
3 reldm0 5927 . . . . . . . . . . 11 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
42, 3syl 17 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
5 fndm 6652 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶)
65eqeq1d 2733 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅))
74, 6bitrd 279 . . . . . . . . 9 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅))
87ad2antrr 723 . . . . . . . 8 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ ↔ 𝐶 = ∅))
9 simpr 484 . . . . . . . . . 10 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → 𝐵 Fn 𝐷)
10 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
119, 10anim12i 612 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 Fn 𝐷𝐷 ∈ On))
1211anim1i 614 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐶 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
138, 12sylbida 591 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
14 oveq1 7419 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝐷) = (∅ +o 𝐷))
15 id 22 . . . . . . . . . . . . 13 (𝐶 = ∅ → 𝐶 = ∅)
1614, 15difeq12d 4123 . . . . . . . . . . . 12 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = ((∅ +o 𝐷) ∖ ∅))
17 dif0 4372 . . . . . . . . . . . 12 ((∅ +o 𝐷) ∖ ∅) = (∅ +o 𝐷)
1816, 17eqtrdi 2787 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = (∅ +o 𝐷))
1918eleq2d 2818 . . . . . . . . . 10 (𝐶 = ∅ → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝑥 ∈ (∅ +o 𝐷)))
20 oveq1 7419 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝑧) = (∅ +o 𝑧))
2120eqeq2d 2742 . . . . . . . . . . . 12 (𝐶 = ∅ → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (∅ +o 𝑧)))
2221anbi1d 629 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2322rexbidv 3177 . . . . . . . . . 10 (𝐶 = ∅ → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2419, 23anbi12d 630 . . . . . . . . 9 (𝐶 = ∅ → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))))
25 oa0r 8542 . . . . . . . . . . . 12 (𝐷 ∈ On → (∅ +o 𝐷) = 𝐷)
2625eleq2d 2818 . . . . . . . . . . 11 (𝐷 ∈ On → (𝑥 ∈ (∅ +o 𝐷) ↔ 𝑥𝐷))
27 onelon 6389 . . . . . . . . . . . . 13 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
28 oa0r 8542 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (∅ +o 𝑧) = 𝑧)
2928eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑥 = (∅ +o 𝑧) ↔ 𝑥 = 𝑧))
3029anbi1d 629 . . . . . . . . . . . . 13 (𝑧 ∈ On → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3127, 30syl 17 . . . . . . . . . . . 12 ((𝐷 ∈ On ∧ 𝑧𝐷) → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3231rexbidva 3175 . . . . . . . . . . 11 (𝐷 ∈ On → (∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3326, 32anbi12d 630 . . . . . . . . . 10 (𝐷 ∈ On → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)))))
34 df-rex 3070 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ ∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
35 an12 642 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
36 eqcom 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧𝑧 = 𝑥)
3736anbi1i 623 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3835, 37bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3938exbii 1849 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
40 eleq1w 2815 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑧𝐷𝑥𝐷))
41 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐵𝑧) = (𝐵𝑥))
4241eqeq2d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑥)))
4340, 42anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → ((𝑧𝐷𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥))))
4443equsexvw 2007 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4534, 39, 443bitri 297 . . . . . . . . . . . . . . . 16 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4645baib 535 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
4746adantl 481 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
48 eqcom 2738 . . . . . . . . . . . . . 14 (𝑦 = (𝐵𝑥) ↔ (𝐵𝑥) = 𝑦)
4947, 48bitrdi 287 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝐵𝑥) = 𝑦))
50 fnbrfvb 6944 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → ((𝐵𝑥) = 𝑦𝑥𝐵𝑦))
5149, 50bitrd 279 . . . . . . . . . . . 12 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑥𝐵𝑦))
5251pm5.32da 578 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑥𝐵𝑦)))
53 fnbr 6657 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐵𝑦) → 𝑥𝐷)
5453ex 412 . . . . . . . . . . . . 13 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦𝑥𝐷))
5554pm4.71rd 562 . . . . . . . . . . . 12 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦)))
56 df-br 5149 . . . . . . . . . . . 12 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
5755, 56bitr3di 286 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷𝑥𝐵𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5852, 57bitrd 279 . . . . . . . . . 10 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5933, 58sylan9bbr 510 . . . . . . . . 9 ((𝐵 Fn 𝐷𝐷 ∈ On) → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6024, 59sylan9bbr 510 . . . . . . . 8 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6160opabbidv 5214 . . . . . . 7 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
6213, 61syl 17 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
63 fnrel 6651 . . . . . . . . 9 (𝐵 Fn 𝐷 → Rel 𝐵)
64 opabid2 5828 . . . . . . . . 9 (Rel 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6563, 64syl 17 . . . . . . . 8 (𝐵 Fn 𝐷 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6665adantl 481 . . . . . . 7 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6766ad2antrr 723 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6862, 67eqtrd 2771 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = 𝐵)
691, 68uneq12d 4164 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (∅ ∪ 𝐵))
70 0un 4392 . . . 4 (∅ ∪ 𝐵) = 𝐵
7169, 70eqtrdi 2787 . . 3 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵)
7271ex 412 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
73 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
7473tfsconcatun 42390 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
7574eqeq1d 2733 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
7672, 75sylibrd 259 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  Vcvv 3473  cdif 3945  cun 3946  c0 4322  cop 4634   class class class wbr 5148  {copab 5210  dom cdm 5676  Rel wrel 5681  Oncon0 6364   Fn wfn 6538  cfv 6543  (class class class)co 7412  cmpo 7414   +o coa 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474
This theorem is referenced by:  tfsconcat0b  42399
  Copyright terms: Public domain W3C validator