Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat0i Structured version   Visualization version   GIF version

Theorem tfsconcat0i 43341
Description: The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat0i (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat0i
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 fnrel 6623 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → Rel 𝐴)
3 reldm0 5894 . . . . . . . . . . 11 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
42, 3syl 17 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
5 fndm 6624 . . . . . . . . . . 11 (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶)
65eqeq1d 2732 . . . . . . . . . 10 (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅))
74, 6bitrd 279 . . . . . . . . 9 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅))
87ad2antrr 726 . . . . . . . 8 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ ↔ 𝐶 = ∅))
9 simpr 484 . . . . . . . . . 10 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → 𝐵 Fn 𝐷)
10 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
119, 10anim12i 613 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 Fn 𝐷𝐷 ∈ On))
1211anim1i 615 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐶 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
138, 12sylbida 592 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → ((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅))
14 oveq1 7397 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝐷) = (∅ +o 𝐷))
15 id 22 . . . . . . . . . . . . 13 (𝐶 = ∅ → 𝐶 = ∅)
1614, 15difeq12d 4093 . . . . . . . . . . . 12 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = ((∅ +o 𝐷) ∖ ∅))
17 dif0 4344 . . . . . . . . . . . 12 ((∅ +o 𝐷) ∖ ∅) = (∅ +o 𝐷)
1816, 17eqtrdi 2781 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = (∅ +o 𝐷))
1918eleq2d 2815 . . . . . . . . . 10 (𝐶 = ∅ → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝑥 ∈ (∅ +o 𝐷)))
20 oveq1 7397 . . . . . . . . . . . . 13 (𝐶 = ∅ → (𝐶 +o 𝑧) = (∅ +o 𝑧))
2120eqeq2d 2741 . . . . . . . . . . . 12 (𝐶 = ∅ → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (∅ +o 𝑧)))
2221anbi1d 631 . . . . . . . . . . 11 (𝐶 = ∅ → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2322rexbidv 3158 . . . . . . . . . 10 (𝐶 = ∅ → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
2419, 23anbi12d 632 . . . . . . . . 9 (𝐶 = ∅ → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))))
25 oa0r 8505 . . . . . . . . . . . 12 (𝐷 ∈ On → (∅ +o 𝐷) = 𝐷)
2625eleq2d 2815 . . . . . . . . . . 11 (𝐷 ∈ On → (𝑥 ∈ (∅ +o 𝐷) ↔ 𝑥𝐷))
27 onelon 6360 . . . . . . . . . . . . 13 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
28 oa0r 8505 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (∅ +o 𝑧) = 𝑧)
2928eqeq2d 2741 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑥 = (∅ +o 𝑧) ↔ 𝑥 = 𝑧))
3029anbi1d 631 . . . . . . . . . . . . 13 (𝑧 ∈ On → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3127, 30syl 17 . . . . . . . . . . . 12 ((𝐷 ∈ On ∧ 𝑧𝐷) → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3231rexbidva 3156 . . . . . . . . . . 11 (𝐷 ∈ On → (∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
3326, 32anbi12d 632 . . . . . . . . . 10 (𝐷 ∈ On → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)))))
34 df-rex 3055 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ ∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))))
35 an12 645 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
36 eqcom 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧𝑧 = 𝑥)
3736anbi1i 624 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑧 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3835, 37bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
3938exbii 1848 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧𝐷 ∧ (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))))
40 eleq1w 2812 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑧𝐷𝑥𝐷))
41 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐵𝑧) = (𝐵𝑥))
4241eqeq2d 2741 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑥)))
4340, 42anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → ((𝑧𝐷𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥))))
4443equsexvw 2005 . . . . . . . . . . . . . . . . 17 (∃𝑧(𝑧 = 𝑥 ∧ (𝑧𝐷𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4534, 39, 443bitri 297 . . . . . . . . . . . . . . . 16 (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝑥𝐷𝑦 = (𝐵𝑥)))
4645baib 535 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
4746adantl 481 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑥)))
48 eqcom 2737 . . . . . . . . . . . . . 14 (𝑦 = (𝐵𝑥) ↔ (𝐵𝑥) = 𝑦)
4947, 48bitrdi 287 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ (𝐵𝑥) = 𝑦))
50 fnbrfvb 6914 . . . . . . . . . . . . 13 ((𝐵 Fn 𝐷𝑥𝐷) → ((𝐵𝑥) = 𝑦𝑥𝐵𝑦))
5149, 50bitrd 279 . . . . . . . . . . . 12 ((𝐵 Fn 𝐷𝑥𝐷) → (∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧)) ↔ 𝑥𝐵𝑦))
5251pm5.32da 579 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ (𝑥𝐷𝑥𝐵𝑦)))
53 fnbr 6629 . . . . . . . . . . . . . 14 ((𝐵 Fn 𝐷𝑥𝐵𝑦) → 𝑥𝐷)
5453ex 412 . . . . . . . . . . . . 13 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦𝑥𝐷))
5554pm4.71rd 562 . . . . . . . . . . . 12 (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦)))
56 df-br 5111 . . . . . . . . . . . 12 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
5755, 56bitr3di 286 . . . . . . . . . . 11 (𝐵 Fn 𝐷 → ((𝑥𝐷𝑥𝐵𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5852, 57bitrd 279 . . . . . . . . . 10 (𝐵 Fn 𝐷 → ((𝑥𝐷 ∧ ∃𝑧𝐷 (𝑥 = 𝑧𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
5933, 58sylan9bbr 510 . . . . . . . . 9 ((𝐵 Fn 𝐷𝐷 ∈ On) → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6024, 59sylan9bbr 510 . . . . . . . 8 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6160opabbidv 5176 . . . . . . 7 (((𝐵 Fn 𝐷𝐷 ∈ On) ∧ 𝐶 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
6213, 61syl 17 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵})
63 fnrel 6623 . . . . . . . . 9 (𝐵 Fn 𝐷 → Rel 𝐵)
64 opabid2 5794 . . . . . . . . 9 (Rel 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6563, 64syl 17 . . . . . . . 8 (𝐵 Fn 𝐷 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6665adantl 481 . . . . . . 7 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6766ad2antrr 726 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵)
6862, 67eqtrd 2765 . . . . 5 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = 𝐵)
691, 68uneq12d 4135 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (∅ ∪ 𝐵))
70 0un 4362 . . . 4 (∅ ∪ 𝐵) = 𝐵
7169, 70eqtrdi 2781 . . 3 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵)
7271ex 412 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
73 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
7473tfsconcatun 43333 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
7574eqeq1d 2732 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐵))
7672, 75sylibrd 259 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  c0 4299  cop 4598   class class class wbr 5110  {copab 5172  dom cdm 5641  Rel wrel 5646  Oncon0 6335   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  tfsconcat0b  43342
  Copyright terms: Public domain W3C validator