Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → 𝐴 = ∅) |
2 | | fnrel 6651 |
. . . . . . . . . . 11
⊢ (𝐴 Fn 𝐶 → Rel 𝐴) |
3 | | reldm0 5927 |
. . . . . . . . . . 11
⊢ (Rel
𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
4 | 2, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
5 | | fndm 6652 |
. . . . . . . . . . 11
⊢ (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶) |
6 | 5 | eqeq1d 2733 |
. . . . . . . . . 10
⊢ (𝐴 Fn 𝐶 → (dom 𝐴 = ∅ ↔ 𝐶 = ∅)) |
7 | 4, 6 | bitrd 279 |
. . . . . . . . 9
⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
8 | 7 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ ↔ 𝐶 = ∅)) |
9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → 𝐵 Fn 𝐷) |
10 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On) |
11 | 9, 10 | anim12i 612 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 Fn 𝐷 ∧ 𝐷 ∈ On)) |
12 | 11 | anim1i 614 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐶 = ∅) → ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅)) |
13 | 8, 12 | sylbida 591 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅)) |
14 | | oveq1 7419 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → (𝐶 +o 𝐷) = (∅ +o 𝐷)) |
15 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → 𝐶 = ∅) |
16 | 14, 15 | difeq12d 4123 |
. . . . . . . . . . . 12
⊢ (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = ((∅ +o 𝐷) ∖
∅)) |
17 | | dif0 4372 |
. . . . . . . . . . . 12
⊢ ((∅
+o 𝐷) ∖
∅) = (∅ +o 𝐷) |
18 | 16, 17 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → ((𝐶 +o 𝐷) ∖ 𝐶) = (∅ +o 𝐷)) |
19 | 18 | eleq2d 2818 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝑥 ∈ (∅ +o 𝐷))) |
20 | | oveq1 7419 |
. . . . . . . . . . . . 13
⊢ (𝐶 = ∅ → (𝐶 +o 𝑧) = (∅ +o 𝑧)) |
21 | 20 | eqeq2d 2742 |
. . . . . . . . . . . 12
⊢ (𝐶 = ∅ → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (∅ +o 𝑧))) |
22 | 21 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
23 | 22 | rexbidv 3177 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
24 | 19, 23 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝐶 = ∅ → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))))) |
25 | | oa0r 8542 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ On → (∅
+o 𝐷) = 𝐷) |
26 | 25 | eleq2d 2818 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (𝑥 ∈ (∅ +o
𝐷) ↔ 𝑥 ∈ 𝐷)) |
27 | | onelon 6389 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
28 | | oa0r 8542 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (∅
+o 𝑧) = 𝑧) |
29 | 28 | eqeq2d 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑥 = (∅ +o 𝑧) ↔ 𝑥 = 𝑧)) |
30 | 29 | anbi1d 629 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → ((𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
32 | 31 | rexbidva 3175 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
33 | 26, 32 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝐷 ∈ On → ((𝑥 ∈ (∅ +o
𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))))) |
34 | | df-rex 3070 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧 ∈
𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧(𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)))) |
35 | | an12 642 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 = 𝑧 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
36 | | eqcom 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
37 | 36 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑧 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
38 | 35, 37 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
39 | 38 | exbii 1849 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧(𝑧 ∈ 𝐷 ∧ (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)))) |
40 | | eleq1w 2815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐷 ↔ 𝑥 ∈ 𝐷)) |
41 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → (𝐵‘𝑧) = (𝐵‘𝑥)) |
42 | 41 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑥))) |
43 | 40, 42 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥)))) |
44 | 43 | equsexvw 2007 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧(𝑧 = 𝑥 ∧ (𝑧 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥))) |
45 | 34, 39, 44 | 3bitri 297 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑧 ∈
𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 = (𝐵‘𝑥))) |
46 | 45 | baib 535 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑥))) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑥))) |
48 | | eqcom 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐵‘𝑥) ↔ (𝐵‘𝑥) = 𝑦) |
49 | 47, 48 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝐵‘𝑥) = 𝑦)) |
50 | | fnbrfvb 6944 |
. . . . . . . . . . . . 13
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐵‘𝑥) = 𝑦 ↔ 𝑥𝐵𝑦)) |
51 | 49, 50 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑥𝐵𝑦)) |
52 | 51 | pm5.32da 578 |
. . . . . . . . . . 11
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦))) |
53 | | fnbr 6657 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Fn 𝐷 ∧ 𝑥𝐵𝑦) → 𝑥 ∈ 𝐷) |
54 | 53 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 → 𝑥 ∈ 𝐷)) |
55 | 54 | pm4.71rd 562 |
. . . . . . . . . . . 12
⊢ (𝐵 Fn 𝐷 → (𝑥𝐵𝑦 ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦))) |
56 | | df-br 5149 |
. . . . . . . . . . . 12
⊢ (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) |
57 | 55, 56 | bitr3di 286 |
. . . . . . . . . . 11
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
58 | 52, 57 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝐵 Fn 𝐷 → ((𝑥 ∈ 𝐷 ∧ ∃𝑧 ∈ 𝐷 (𝑥 = 𝑧 ∧ 𝑦 = (𝐵‘𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
59 | 33, 58 | sylan9bbr 510 |
. . . . . . . . 9
⊢ ((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) → ((𝑥 ∈ (∅ +o 𝐷) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (∅ +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
60 | 24, 59 | sylan9bbr 510 |
. . . . . . . 8
⊢ (((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
61 | 60 | opabbidv 5214 |
. . . . . . 7
⊢ (((𝐵 Fn 𝐷 ∧ 𝐷 ∈ On) ∧ 𝐶 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵}) |
62 | 13, 61 | syl 17 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵}) |
63 | | fnrel 6651 |
. . . . . . . . 9
⊢ (𝐵 Fn 𝐷 → Rel 𝐵) |
64 | | opabid2 5828 |
. . . . . . . . 9
⊢ (Rel
𝐵 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵) |
65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝐵 Fn 𝐷 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵) |
66 | 65 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵) |
67 | 66 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐵} = 𝐵) |
68 | 62, 67 | eqtrd 2771 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = 𝐵) |
69 | 1, 68 | uneq12d 4164 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (∅ ∪ 𝐵)) |
70 | | 0un 4392 |
. . . 4
⊢ (∅
∪ 𝐵) = 𝐵 |
71 | 69, 70 | eqtrdi 2787 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐴 = ∅) → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵) |
72 | 71 | ex 412 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵)) |
73 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
74 | 73 | tfsconcatun 42390 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
75 | 74 | eqeq1d 2733 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐵 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐵)) |
76 | 72, 75 | sylibrd 259 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) |