Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natglobalincr Structured version   Visualization version   GIF version

Theorem natglobalincr 46496
Description: Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.)
Hypotheses
Ref Expression
natglobalincr.1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
natglobalincr.2 𝑇 ∈ ℤ
Assertion
Ref Expression
natglobalincr 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Distinct variable groups:   𝐵,𝑘   𝑇,𝑘,𝑡
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem natglobalincr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13686 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
21peano2zd 12721 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ)
3 natglobalincr.2 . . . 4 𝑇 ∈ ℤ
4 elfz1 13543 . . . 4 (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
52, 3, 4sylancl 584 . . 3 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
6 fveq2 6901 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
76breq2d 5165 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
8 fveq2 6901 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
98breq2d 5165 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑏)))
10 fveq2 6901 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
1110breq2d 5165 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑏 + 1))))
12 fveq2 6901 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
1312breq2d 5165 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑡)))
14 natglobalincr.1 . . . . 5 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
1514rspec 3238 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
16 df-br 5154 . . . . . . . 8 ((𝐵𝑘) < (𝐵𝑏) ↔ ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < )
17 ltrelxr 11325 . . . . . . . . 9 < ⊆ (ℝ* × ℝ*)
1817sseli 3975 . . . . . . . 8 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
1916, 18sylbi 216 . . . . . . 7 ((𝐵𝑘) < (𝐵𝑏) → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
20 opelxp1 5724 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑘) ∈ ℝ*)
2119, 20syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑘) ∈ ℝ*)
22213ad2ant3 1132 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) ∈ ℝ*)
23 opelxp2 5725 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑏) ∈ ℝ*)
2419, 23syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑏) ∈ ℝ*)
25243ad2ant3 1132 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ*)
26 0red 11267 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ∈ ℝ)
27 simp1 1133 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
28 zre 12614 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
29 peano2re 11437 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3027, 1, 28, 294syl 19 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
31 simp21 1203 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℤ)
3231zred 12718 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℝ)
33 elfzole1 13694 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
3428ltp1d 12196 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1))
351, 34syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
36 0red 11267 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 0 ∈ ℝ)
37 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
3836, 37, 293jca 1125 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
39 leltletr 11355 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
401, 28, 38, 394syl 19 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4133, 35, 40mp2and 697 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1))
42413ad2ant1 1130 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ (𝑘 + 1))
43 simp22 1204 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
4426, 30, 32, 42, 43letrd 11421 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ 𝑏)
45 simp23 1205 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 < 𝑇)
46 0zd 12622 . . . . . . . . . 10 (𝑏 ∈ ℤ → 0 ∈ ℤ)
473a1i 11 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑇 ∈ ℤ)
48 elfzo 13688 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
4946, 47, 48mpd3an23 1460 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
50 fveq2 6901 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
51 fvoveq1 7447 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1)))
5250, 51breq12d 5166 . . . . . . . . . 10 (𝑘 = 𝑏 → ((𝐵𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5352, 14vtoclri 3572 . . . . . . . . 9 (𝑏 ∈ (0..^𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
5449, 53biimtrrdi 253 . . . . . . . 8 (𝑏 ∈ ℤ → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5531, 54syl 17 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5644, 45, 55mp2and 697 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
57 df-br 5154 . . . . . . 7 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) ↔ ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < )
5817sseli 3975 . . . . . . 7 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
5957, 58sylbi 216 . . . . . 6 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
60 opelxp2 5725 . . . . . 6 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
6156, 59, 603syl 18 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
62 simp3 1135 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵𝑏))
6322, 25, 61, 62, 56xrlttrd 13192 . . . 4 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵‘(𝑏 + 1)))
64 elfzoel2 13685 . . . 4 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
65 elfzop1le2 13699 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
667, 9, 11, 13, 15, 63, 2, 64, 65fzindd 12716 . . 3 ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘) < (𝐵𝑡))
675, 66sylbida 590 . 2 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵𝑘) < (𝐵𝑡))
6867rgen2 3188 1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cop 4639   class class class wbr 5153   × cxp 5680  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161  *cxr 11297   < clt 11298  cle 11299  cz 12610  ...cfz 13538  ..^cfzo 13681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator