Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natglobalincr Structured version   Visualization version   GIF version

Theorem natglobalincr 46882
Description: Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.)
Hypotheses
Ref Expression
natglobalincr.1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
natglobalincr.2 𝑇 ∈ ℤ
Assertion
Ref Expression
natglobalincr 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Distinct variable groups:   𝐵,𝑘   𝑇,𝑘,𝑡
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem natglobalincr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13627 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
21peano2zd 12648 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ)
3 natglobalincr.2 . . . 4 𝑇 ∈ ℤ
4 elfz1 13480 . . . 4 (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
52, 3, 4sylancl 586 . . 3 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
6 fveq2 6861 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
76breq2d 5122 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
8 fveq2 6861 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
98breq2d 5122 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑏)))
10 fveq2 6861 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
1110breq2d 5122 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑏 + 1))))
12 fveq2 6861 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
1312breq2d 5122 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑡)))
14 natglobalincr.1 . . . . 5 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
1514rspec 3229 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
16 df-br 5111 . . . . . . . 8 ((𝐵𝑘) < (𝐵𝑏) ↔ ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < )
17 ltrelxr 11242 . . . . . . . . 9 < ⊆ (ℝ* × ℝ*)
1817sseli 3945 . . . . . . . 8 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
1916, 18sylbi 217 . . . . . . 7 ((𝐵𝑘) < (𝐵𝑏) → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
20 opelxp1 5683 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑘) ∈ ℝ*)
2119, 20syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑘) ∈ ℝ*)
22213ad2ant3 1135 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) ∈ ℝ*)
23 opelxp2 5684 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑏) ∈ ℝ*)
2419, 23syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑏) ∈ ℝ*)
25243ad2ant3 1135 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ*)
26 0red 11184 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ∈ ℝ)
27 simp1 1136 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
28 zre 12540 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
29 peano2re 11354 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3027, 1, 28, 294syl 19 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
31 simp21 1207 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℤ)
3231zred 12645 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℝ)
33 elfzole1 13635 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
3428ltp1d 12120 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1))
351, 34syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
36 0red 11184 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 0 ∈ ℝ)
37 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
3836, 37, 293jca 1128 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
39 leltletr 11272 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
401, 28, 38, 394syl 19 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4133, 35, 40mp2and 699 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1))
42413ad2ant1 1133 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ (𝑘 + 1))
43 simp22 1208 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
4426, 30, 32, 42, 43letrd 11338 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ 𝑏)
45 simp23 1209 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 < 𝑇)
46 0zd 12548 . . . . . . . . . 10 (𝑏 ∈ ℤ → 0 ∈ ℤ)
473a1i 11 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑇 ∈ ℤ)
48 elfzo 13629 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
4946, 47, 48mpd3an23 1465 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
50 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
51 fvoveq1 7413 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1)))
5250, 51breq12d 5123 . . . . . . . . . 10 (𝑘 = 𝑏 → ((𝐵𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5352, 14vtoclri 3559 . . . . . . . . 9 (𝑏 ∈ (0..^𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
5449, 53biimtrrdi 254 . . . . . . . 8 (𝑏 ∈ ℤ → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5531, 54syl 17 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5644, 45, 55mp2and 699 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
57 df-br 5111 . . . . . . 7 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) ↔ ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < )
5817sseli 3945 . . . . . . 7 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
5957, 58sylbi 217 . . . . . 6 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
60 opelxp2 5684 . . . . . 6 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
6156, 59, 603syl 18 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
62 simp3 1138 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵𝑏))
6322, 25, 61, 62, 56xrlttrd 13126 . . . 4 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵‘(𝑏 + 1)))
64 elfzoel2 13626 . . . 4 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
65 elfzop1le2 13640 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
667, 9, 11, 13, 15, 63, 2, 64, 65fzindd 12643 . . 3 ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘) < (𝐵𝑡))
675, 66sylbida 592 . 2 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵𝑘) < (𝐵𝑡))
6867rgen2 3178 1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cz 12536  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator