Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natglobalincr Structured version   Visualization version   GIF version

Theorem natglobalincr 46985
Description: Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.)
Hypotheses
Ref Expression
natglobalincr.1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
natglobalincr.2 𝑇 ∈ ℤ
Assertion
Ref Expression
natglobalincr 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Distinct variable groups:   𝐵,𝑘   𝑇,𝑘,𝑡
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem natglobalincr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13559 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
21peano2zd 12580 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ)
3 natglobalincr.2 . . . 4 𝑇 ∈ ℤ
4 elfz1 13412 . . . 4 (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
52, 3, 4sylancl 586 . . 3 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
6 fveq2 6822 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
76breq2d 5101 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
8 fveq2 6822 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
98breq2d 5101 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑏)))
10 fveq2 6822 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
1110breq2d 5101 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑏 + 1))))
12 fveq2 6822 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
1312breq2d 5101 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑡)))
14 natglobalincr.1 . . . . 5 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
1514rspec 3223 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
16 df-br 5090 . . . . . . . 8 ((𝐵𝑘) < (𝐵𝑏) ↔ ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < )
17 ltrelxr 11173 . . . . . . . . 9 < ⊆ (ℝ* × ℝ*)
1817sseli 3925 . . . . . . . 8 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
1916, 18sylbi 217 . . . . . . 7 ((𝐵𝑘) < (𝐵𝑏) → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
20 opelxp1 5656 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑘) ∈ ℝ*)
2119, 20syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑘) ∈ ℝ*)
22213ad2ant3 1135 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) ∈ ℝ*)
23 opelxp2 5657 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑏) ∈ ℝ*)
2419, 23syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑏) ∈ ℝ*)
25243ad2ant3 1135 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ*)
26 0red 11115 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ∈ ℝ)
27 simp1 1136 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
28 zre 12472 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
29 peano2re 11286 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3027, 1, 28, 294syl 19 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
31 simp21 1207 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℤ)
3231zred 12577 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℝ)
33 elfzole1 13567 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
3428ltp1d 12052 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1))
351, 34syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
36 0red 11115 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 0 ∈ ℝ)
37 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
3836, 37, 293jca 1128 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
39 leltletr 11204 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
401, 28, 38, 394syl 19 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4133, 35, 40mp2and 699 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1))
42413ad2ant1 1133 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ (𝑘 + 1))
43 simp22 1208 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
4426, 30, 32, 42, 43letrd 11270 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ 𝑏)
45 simp23 1209 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 < 𝑇)
46 0zd 12480 . . . . . . . . . 10 (𝑏 ∈ ℤ → 0 ∈ ℤ)
473a1i 11 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑇 ∈ ℤ)
48 elfzo 13561 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
4946, 47, 48mpd3an23 1465 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
50 fveq2 6822 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
51 fvoveq1 7369 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1)))
5250, 51breq12d 5102 . . . . . . . . . 10 (𝑘 = 𝑏 → ((𝐵𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5352, 14vtoclri 3540 . . . . . . . . 9 (𝑏 ∈ (0..^𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
5449, 53biimtrrdi 254 . . . . . . . 8 (𝑏 ∈ ℤ → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5531, 54syl 17 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5644, 45, 55mp2and 699 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
57 df-br 5090 . . . . . . 7 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) ↔ ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < )
5817sseli 3925 . . . . . . 7 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
5957, 58sylbi 217 . . . . . 6 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
60 opelxp2 5657 . . . . . 6 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
6156, 59, 603syl 18 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
62 simp3 1138 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵𝑏))
6322, 25, 61, 62, 56xrlttrd 13058 . . . 4 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵‘(𝑏 + 1)))
64 elfzoel2 13558 . . . 4 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
65 elfzop1le2 13572 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
667, 9, 11, 13, 15, 63, 2, 64, 65fzindd 12575 . . 3 ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘) < (𝐵𝑡))
675, 66sylbida 592 . 2 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵𝑘) < (𝐵𝑡))
6867rgen2 3172 1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cop 4579   class class class wbr 5089   × cxp 5612  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cz 12468  ...cfz 13407  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator