Step | Hyp | Ref
| Expression |
1 | | elfzoelz 13716 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
2 | 1 | peano2zd 12750 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ) |
3 | | natglobalincr.2 |
. . . 4
⊢ 𝑇 ∈ ℤ |
4 | | elfz1 13572 |
. . . 4
⊢ (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
5 | 2, 3, 4 | sylancl 585 |
. . 3
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
6 | | fveq2 6920 |
. . . . 5
⊢ (𝑎 = (𝑘 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑘 + 1))) |
7 | 6 | breq2d 5178 |
. . . 4
⊢ (𝑎 = (𝑘 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
8 | | fveq2 6920 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐵‘𝑎) = (𝐵‘𝑏)) |
9 | 8 | breq2d 5178 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘𝑏))) |
10 | | fveq2 6920 |
. . . . 5
⊢ (𝑎 = (𝑏 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑏 + 1))) |
11 | 10 | breq2d 5178 |
. . . 4
⊢ (𝑎 = (𝑏 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘(𝑏 + 1)))) |
12 | | fveq2 6920 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝐵‘𝑎) = (𝐵‘𝑡)) |
13 | 12 | breq2d 5178 |
. . . 4
⊢ (𝑎 = 𝑡 → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘𝑡))) |
14 | | natglobalincr.1 |
. . . . 5
⊢
∀𝑘 ∈
(0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) |
15 | 14 | rspec 3256 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
16 | | df-br 5167 |
. . . . . . . 8
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) ↔ 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ < ) |
17 | | ltrelxr 11351 |
. . . . . . . . 9
⊢ <
⊆ (ℝ* × ℝ*) |
18 | 17 | sseli 4004 |
. . . . . . . 8
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ < → 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*)) |
19 | 16, 18 | sylbi 217 |
. . . . . . 7
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*)) |
20 | | opelxp1 5742 |
. . . . . . 7
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*) → (𝐵‘𝑘) ∈
ℝ*) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → (𝐵‘𝑘) ∈
ℝ*) |
22 | 21 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) ∈
ℝ*) |
23 | | opelxp2 5743 |
. . . . . . 7
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*) → (𝐵‘𝑏) ∈
ℝ*) |
24 | 19, 23 | syl 17 |
. . . . . 6
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → (𝐵‘𝑏) ∈
ℝ*) |
25 | 24 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑏) ∈
ℝ*) |
26 | | 0red 11293 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ∈ ℝ) |
27 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
28 | | zre 12643 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
29 | | peano2re 11463 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
30 | 27, 1, 28, 29 | 4syl 19 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
31 | | simp21 1206 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
32 | 31 | zred 12747 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
33 | | elfzole1 13724 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
34 | 28 | ltp1d 12225 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1)) |
35 | 1, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
36 | | 0red 11293 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℝ → 0 ∈
ℝ) |
37 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℝ → 𝑘 ∈
ℝ) |
38 | 36, 37, 29 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℝ → (0 ∈
ℝ ∧ 𝑘 ∈
ℝ ∧ (𝑘 + 1)
∈ ℝ)) |
39 | | leltletr 11381 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑘
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ) → ((0 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1))) |
40 | 1, 28, 38, 39 | 4syl 19 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1))) |
41 | 33, 35, 40 | mp2and 698 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1)) |
42 | 41 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
43 | | simp22 1207 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
44 | 26, 30, 32, 42, 43 | letrd 11447 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ≤ 𝑏) |
45 | | simp23 1208 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 < 𝑇) |
46 | | 0zd 12651 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤ → 0 ∈
ℤ) |
47 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤ → 𝑇 ∈
ℤ) |
48 | | elfzo 13718 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑇 ∈
ℤ) → (𝑏 ∈
(0..^𝑇) ↔ (0 ≤
𝑏 ∧ 𝑏 < 𝑇))) |
49 | 46, 47, 48 | mpd3an23 1463 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏 ∧ 𝑏 < 𝑇))) |
50 | | fveq2 6920 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑏 → (𝐵‘𝑘) = (𝐵‘𝑏)) |
51 | | fvoveq1 7471 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1))) |
52 | 50, 51 | breq12d 5179 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑏 → ((𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
53 | 52, 14 | vtoclri 3603 |
. . . . . . . . 9
⊢ (𝑏 ∈ (0..^𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1))) |
54 | 49, 53 | biimtrrdi 254 |
. . . . . . . 8
⊢ (𝑏 ∈ ℤ → ((0 ≤
𝑏 ∧ 𝑏 < 𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
55 | 31, 54 | syl 17 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → ((0 ≤ 𝑏 ∧ 𝑏 < 𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
56 | 44, 45, 55 | mp2and 698 |
. . . . . 6
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1))) |
57 | | df-br 5167 |
. . . . . . 7
⊢ ((𝐵‘𝑏) < (𝐵‘(𝑏 + 1)) ↔ 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ < ) |
58 | 17 | sseli 4004 |
. . . . . . 7
⊢
(〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ < → 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*)) |
59 | 57, 58 | sylbi 217 |
. . . . . 6
⊢ ((𝐵‘𝑏) < (𝐵‘(𝑏 + 1)) → 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*)) |
60 | | opelxp2 5743 |
. . . . . 6
⊢
(〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*) → (𝐵‘(𝑏 + 1)) ∈
ℝ*) |
61 | 56, 59, 60 | 3syl 18 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘(𝑏 + 1)) ∈
ℝ*) |
62 | | simp3 1138 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) < (𝐵‘𝑏)) |
63 | 22, 25, 61, 62, 56 | xrlttrd 13221 |
. . . 4
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) < (𝐵‘(𝑏 + 1))) |
64 | | elfzoel2 13715 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
65 | | elfzop1le2 13729 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇) |
66 | 7, 9, 11, 13, 15, 63, 2, 64, 65 | fzindd 12745 |
. . 3
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)) → (𝐵‘𝑘) < (𝐵‘𝑡)) |
67 | 5, 66 | sylbida 591 |
. 2
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵‘𝑘) < (𝐵‘𝑡)) |
68 | 67 | rgen2 3205 |
1
⊢
∀𝑘 ∈
(0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) |