Step | Hyp | Ref
| Expression |
1 | | elfzoelz 13460 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
2 | 1 | peano2zd 12502 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ) |
3 | | natglobalincr.2 |
. . . 4
⊢ 𝑇 ∈ ℤ |
4 | | elfz1 13317 |
. . . 4
⊢ (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
5 | 2, 3, 4 | sylancl 586 |
. . 3
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇))) |
6 | | fveq2 6811 |
. . . . 5
⊢ (𝑎 = (𝑘 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑘 + 1))) |
7 | 6 | breq2d 5099 |
. . . 4
⊢ (𝑎 = (𝑘 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
8 | | fveq2 6811 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐵‘𝑎) = (𝐵‘𝑏)) |
9 | 8 | breq2d 5099 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘𝑏))) |
10 | | fveq2 6811 |
. . . . 5
⊢ (𝑎 = (𝑏 + 1) → (𝐵‘𝑎) = (𝐵‘(𝑏 + 1))) |
11 | 10 | breq2d 5099 |
. . . 4
⊢ (𝑎 = (𝑏 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘(𝑏 + 1)))) |
12 | | fveq2 6811 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝐵‘𝑎) = (𝐵‘𝑡)) |
13 | 12 | breq2d 5099 |
. . . 4
⊢ (𝑎 = 𝑡 → ((𝐵‘𝑘) < (𝐵‘𝑎) ↔ (𝐵‘𝑘) < (𝐵‘𝑡))) |
14 | | natglobalincr.1 |
. . . . 5
⊢
∀𝑘 ∈
(0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) |
15 | 14 | rspec 3230 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
16 | | df-br 5088 |
. . . . . . . 8
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) ↔ 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ < ) |
17 | | ltrelxr 11109 |
. . . . . . . . 9
⊢ <
⊆ (ℝ* × ℝ*) |
18 | 17 | sseli 3927 |
. . . . . . . 8
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ < → 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*)) |
19 | 16, 18 | sylbi 216 |
. . . . . . 7
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → 〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*)) |
20 | | opelxp1 5648 |
. . . . . . 7
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*) → (𝐵‘𝑘) ∈
ℝ*) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → (𝐵‘𝑘) ∈
ℝ*) |
22 | 21 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) ∈
ℝ*) |
23 | | opelxp2 5649 |
. . . . . . 7
⊢
(〈(𝐵‘𝑘), (𝐵‘𝑏)〉 ∈ (ℝ* ×
ℝ*) → (𝐵‘𝑏) ∈
ℝ*) |
24 | 19, 23 | syl 17 |
. . . . . 6
⊢ ((𝐵‘𝑘) < (𝐵‘𝑏) → (𝐵‘𝑏) ∈
ℝ*) |
25 | 24 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑏) ∈
ℝ*) |
26 | | 0red 11051 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ∈ ℝ) |
27 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑘 ∈ (0..^𝑇)) |
28 | | zre 12396 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
29 | 27, 1, 28 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑘 ∈ ℝ) |
30 | | peano2re 11221 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝑘 + 1) ∈ ℝ) |
32 | | simp21 1205 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 ∈ ℤ) |
33 | 32 | zred 12499 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 ∈ ℝ) |
34 | | elfzole1 13468 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘) |
35 | 28 | ltp1d 11978 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1)) |
36 | 1, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
37 | | 0red 11051 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℝ → 0 ∈
ℝ) |
38 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℝ → 𝑘 ∈
ℝ) |
39 | 37, 38, 30 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℝ → (0 ∈
ℝ ∧ 𝑘 ∈
ℝ ∧ (𝑘 + 1)
∈ ℝ)) |
40 | 1, 28, 39 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈
ℝ)) |
41 | | leltletr 11139 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑘
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ) → ((0 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘 ∧ 𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1))) |
43 | 34, 36, 42 | mp2and 696 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1)) |
44 | 43 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ≤ (𝑘 + 1)) |
45 | | simp22 1206 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝑘 + 1) ≤ 𝑏) |
46 | 26, 31, 33, 44, 45 | letrd 11205 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 0 ≤ 𝑏) |
47 | | simp23 1207 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → 𝑏 < 𝑇) |
48 | | 0zd 12404 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤ → 0 ∈
ℤ) |
49 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤ → 𝑇 ∈
ℤ) |
50 | | elfzo 13462 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑇 ∈
ℤ) → (𝑏 ∈
(0..^𝑇) ↔ (0 ≤
𝑏 ∧ 𝑏 < 𝑇))) |
51 | 48, 49, 50 | mpd3an23 1462 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏 ∧ 𝑏 < 𝑇))) |
52 | | fveq2 6811 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑏 → (𝐵‘𝑘) = (𝐵‘𝑏)) |
53 | | fvoveq1 7338 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1))) |
54 | 52, 53 | breq12d 5100 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑏 → ((𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
55 | 54, 14 | vtoclri 3534 |
. . . . . . . . 9
⊢ (𝑏 ∈ (0..^𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1))) |
56 | 51, 55 | syl6bir 253 |
. . . . . . . 8
⊢ (𝑏 ∈ ℤ → ((0 ≤
𝑏 ∧ 𝑏 < 𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
57 | 32, 56 | syl 17 |
. . . . . . 7
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → ((0 ≤ 𝑏 ∧ 𝑏 < 𝑇) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1)))) |
58 | 46, 47, 57 | mp2and 696 |
. . . . . 6
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑏) < (𝐵‘(𝑏 + 1))) |
59 | | df-br 5088 |
. . . . . . 7
⊢ ((𝐵‘𝑏) < (𝐵‘(𝑏 + 1)) ↔ 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ < ) |
60 | 17 | sseli 3927 |
. . . . . . 7
⊢
(〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ < → 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*)) |
61 | 59, 60 | sylbi 216 |
. . . . . 6
⊢ ((𝐵‘𝑏) < (𝐵‘(𝑏 + 1)) → 〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*)) |
62 | | opelxp2 5649 |
. . . . . 6
⊢
(〈(𝐵‘𝑏), (𝐵‘(𝑏 + 1))〉 ∈ (ℝ*
× ℝ*) → (𝐵‘(𝑏 + 1)) ∈
ℝ*) |
63 | 58, 61, 62 | 3syl 18 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘(𝑏 + 1)) ∈
ℝ*) |
64 | | simp3 1137 |
. . . . 5
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) < (𝐵‘𝑏)) |
65 | 22, 25, 63, 64, 58 | xrlttrd 12966 |
. . . 4
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏 ∧ 𝑏 < 𝑇) ∧ (𝐵‘𝑘) < (𝐵‘𝑏)) → (𝐵‘𝑘) < (𝐵‘(𝑏 + 1))) |
66 | | elfzoel2 13459 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ) |
67 | | elfzop1le2 13473 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇) |
68 | 7, 9, 11, 13, 15, 65, 2, 66, 67 | fzindd 12495 |
. . 3
⊢ ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇)) → (𝐵‘𝑘) < (𝐵‘𝑡)) |
69 | 5, 68 | sylbida 592 |
. 2
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵‘𝑘) < (𝐵‘𝑡)) |
70 | 69 | rgen2 3191 |
1
⊢
∀𝑘 ∈
(0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) |