Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natglobalincr Structured version   Visualization version   GIF version

Theorem natglobalincr 45891
Description: Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.)
Hypotheses
Ref Expression
natglobalincr.1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
natglobalincr.2 𝑇 ∈ ℤ
Assertion
Ref Expression
natglobalincr 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Distinct variable groups:   𝐵,𝑘   𝑇,𝑘,𝑡
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem natglobalincr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13637 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
21peano2zd 12674 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ)
3 natglobalincr.2 . . . 4 𝑇 ∈ ℤ
4 elfz1 13494 . . . 4 (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
52, 3, 4sylancl 585 . . 3 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
6 fveq2 6892 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
76breq2d 5161 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
8 fveq2 6892 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
98breq2d 5161 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑏)))
10 fveq2 6892 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
1110breq2d 5161 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑏 + 1))))
12 fveq2 6892 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
1312breq2d 5161 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑡)))
14 natglobalincr.1 . . . . 5 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
1514rspec 3246 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
16 df-br 5150 . . . . . . . 8 ((𝐵𝑘) < (𝐵𝑏) ↔ ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < )
17 ltrelxr 11280 . . . . . . . . 9 < ⊆ (ℝ* × ℝ*)
1817sseli 3979 . . . . . . . 8 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
1916, 18sylbi 216 . . . . . . 7 ((𝐵𝑘) < (𝐵𝑏) → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
20 opelxp1 5719 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑘) ∈ ℝ*)
2119, 20syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑘) ∈ ℝ*)
22213ad2ant3 1134 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) ∈ ℝ*)
23 opelxp2 5720 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑏) ∈ ℝ*)
2419, 23syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑏) ∈ ℝ*)
25243ad2ant3 1134 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ*)
26 0red 11222 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ∈ ℝ)
27 simp1 1135 . . . . . . . . . 10 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
28 zre 12567 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2927, 1, 283syl 18 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ ℝ)
30 peano2re 11392 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3129, 30syl 17 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
32 simp21 1205 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℤ)
3332zred 12671 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℝ)
34 elfzole1 13645 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
3528ltp1d 12149 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1))
361, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
37 0red 11222 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → 0 ∈ ℝ)
38 id 22 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
3937, 38, 303jca 1127 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
401, 28, 393syl 18 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
41 leltletr 11310 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4240, 41syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4334, 36, 42mp2and 696 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1))
44433ad2ant1 1132 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ (𝑘 + 1))
45 simp22 1206 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
4626, 31, 33, 44, 45letrd 11376 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ 𝑏)
47 simp23 1207 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 < 𝑇)
48 0zd 12575 . . . . . . . . . 10 (𝑏 ∈ ℤ → 0 ∈ ℤ)
493a1i 11 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑇 ∈ ℤ)
50 elfzo 13639 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
5148, 49, 50mpd3an23 1462 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
52 fveq2 6892 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
53 fvoveq1 7435 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1)))
5452, 53breq12d 5162 . . . . . . . . . 10 (𝑘 = 𝑏 → ((𝐵𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5554, 14vtoclri 3577 . . . . . . . . 9 (𝑏 ∈ (0..^𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
5651, 55syl6bir 253 . . . . . . . 8 (𝑏 ∈ ℤ → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5732, 56syl 17 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5846, 47, 57mp2and 696 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
59 df-br 5150 . . . . . . 7 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) ↔ ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < )
6017sseli 3979 . . . . . . 7 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
6159, 60sylbi 216 . . . . . 6 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
62 opelxp2 5720 . . . . . 6 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
6358, 61, 623syl 18 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
64 simp3 1137 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵𝑏))
6522, 25, 63, 64, 58xrlttrd 13143 . . . 4 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵‘(𝑏 + 1)))
66 elfzoel2 13636 . . . 4 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
67 elfzop1le2 13650 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
687, 9, 11, 13, 15, 65, 2, 66, 67fzindd 12669 . . 3 ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘) < (𝐵𝑡))
695, 68sylbida 591 . 2 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵𝑘) < (𝐵𝑡))
7069rgen2 3196 1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  cop 4635   class class class wbr 5149   × cxp 5675  cfv 6544  (class class class)co 7412  cr 11112  0cc0 11113  1c1 11114   + caddc 11116  *cxr 11252   < clt 11253  cle 11254  cz 12563  ...cfz 13489  ..^cfzo 13632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator