Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natglobalincr Structured version   Visualization version   GIF version

Theorem natglobalincr 46764
Description: Local monotonicity on half-open integer range implies global monotonicity. (Contributed by Ender Ting, 23-Nov-2024.)
Hypotheses
Ref Expression
natglobalincr.1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
natglobalincr.2 𝑇 ∈ ℤ
Assertion
Ref Expression
natglobalincr 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Distinct variable groups:   𝐵,𝑘   𝑇,𝑘,𝑡
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem natglobalincr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13460 . . . . 5 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
21peano2zd 12502 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ℤ)
3 natglobalincr.2 . . . 4 𝑇 ∈ ℤ
4 elfz1 13317 . . . 4 (((𝑘 + 1) ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
52, 3, 4sylancl 586 . . 3 (𝑘 ∈ (0..^𝑇) → (𝑡 ∈ ((𝑘 + 1)...𝑇) ↔ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)))
6 fveq2 6811 . . . . 5 (𝑎 = (𝑘 + 1) → (𝐵𝑎) = (𝐵‘(𝑘 + 1)))
76breq2d 5099 . . . 4 (𝑎 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
8 fveq2 6811 . . . . 5 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
98breq2d 5099 . . . 4 (𝑎 = 𝑏 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑏)))
10 fveq2 6811 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵‘(𝑏 + 1)))
1110breq2d 5099 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵‘(𝑏 + 1))))
12 fveq2 6811 . . . . 5 (𝑎 = 𝑡 → (𝐵𝑎) = (𝐵𝑡))
1312breq2d 5099 . . . 4 (𝑎 = 𝑡 → ((𝐵𝑘) < (𝐵𝑎) ↔ (𝐵𝑘) < (𝐵𝑡)))
14 natglobalincr.1 . . . . 5 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
1514rspec 3230 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
16 df-br 5088 . . . . . . . 8 ((𝐵𝑘) < (𝐵𝑏) ↔ ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < )
17 ltrelxr 11109 . . . . . . . . 9 < ⊆ (ℝ* × ℝ*)
1817sseli 3927 . . . . . . . 8 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ < → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
1916, 18sylbi 216 . . . . . . 7 ((𝐵𝑘) < (𝐵𝑏) → ⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*))
20 opelxp1 5648 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑘) ∈ ℝ*)
2119, 20syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑘) ∈ ℝ*)
22213ad2ant3 1134 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) ∈ ℝ*)
23 opelxp2 5649 . . . . . . 7 (⟨(𝐵𝑘), (𝐵𝑏)⟩ ∈ (ℝ* × ℝ*) → (𝐵𝑏) ∈ ℝ*)
2419, 23syl 17 . . . . . 6 ((𝐵𝑘) < (𝐵𝑏) → (𝐵𝑏) ∈ ℝ*)
25243ad2ant3 1134 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ*)
26 0red 11051 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ∈ ℝ)
27 simp1 1135 . . . . . . . . . 10 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ (0..^𝑇))
28 zre 12396 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2927, 1, 283syl 18 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑘 ∈ ℝ)
30 peano2re 11221 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3129, 30syl 17 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ∈ ℝ)
32 simp21 1205 . . . . . . . . 9 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℤ)
3332zred 12499 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 ∈ ℝ)
34 elfzole1 13468 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 0 ≤ 𝑘)
3528ltp1d 11978 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 < (𝑘 + 1))
361, 35syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
37 0red 11051 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → 0 ∈ ℝ)
38 id 22 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
3937, 38, 303jca 1127 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
401, 28, 393syl 18 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
41 leltletr 11139 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4240, 41syl 17 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → ((0 ≤ 𝑘𝑘 < (𝑘 + 1)) → 0 ≤ (𝑘 + 1)))
4334, 36, 42mp2and 696 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → 0 ≤ (𝑘 + 1))
44433ad2ant1 1132 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ (𝑘 + 1))
45 simp22 1206 . . . . . . . 8 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝑘 + 1) ≤ 𝑏)
4626, 31, 33, 44, 45letrd 11205 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 0 ≤ 𝑏)
47 simp23 1207 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → 𝑏 < 𝑇)
48 0zd 12404 . . . . . . . . . 10 (𝑏 ∈ ℤ → 0 ∈ ℤ)
493a1i 11 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑇 ∈ ℤ)
50 elfzo 13462 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
5148, 49, 50mpd3an23 1462 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏 ∈ (0..^𝑇) ↔ (0 ≤ 𝑏𝑏 < 𝑇)))
52 fveq2 6811 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵𝑘) = (𝐵𝑏))
53 fvoveq1 7338 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝐵‘(𝑘 + 1)) = (𝐵‘(𝑏 + 1)))
5452, 53breq12d 5100 . . . . . . . . . 10 (𝑘 = 𝑏 → ((𝐵𝑘) < (𝐵‘(𝑘 + 1)) ↔ (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5554, 14vtoclri 3534 . . . . . . . . 9 (𝑏 ∈ (0..^𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
5651, 55syl6bir 253 . . . . . . . 8 (𝑏 ∈ ℤ → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5732, 56syl 17 . . . . . . 7 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → ((0 ≤ 𝑏𝑏 < 𝑇) → (𝐵𝑏) < (𝐵‘(𝑏 + 1))))
5846, 47, 57mp2and 696 . . . . . 6 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑏) < (𝐵‘(𝑏 + 1)))
59 df-br 5088 . . . . . . 7 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) ↔ ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < )
6017sseli 3927 . . . . . . 7 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ < → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
6159, 60sylbi 216 . . . . . 6 ((𝐵𝑏) < (𝐵‘(𝑏 + 1)) → ⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*))
62 opelxp2 5649 . . . . . 6 (⟨(𝐵𝑏), (𝐵‘(𝑏 + 1))⟩ ∈ (ℝ* × ℝ*) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
6358, 61, 623syl 18 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵‘(𝑏 + 1)) ∈ ℝ*)
64 simp3 1137 . . . . 5 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵𝑏))
6522, 25, 63, 64, 58xrlttrd 12966 . . . 4 ((𝑘 ∈ (0..^𝑇) ∧ (𝑏 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑏𝑏 < 𝑇) ∧ (𝐵𝑘) < (𝐵𝑏)) → (𝐵𝑘) < (𝐵‘(𝑏 + 1)))
66 elfzoel2 13459 . . . 4 (𝑘 ∈ (0..^𝑇) → 𝑇 ∈ ℤ)
67 elfzop1le2 13473 . . . 4 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ≤ 𝑇)
687, 9, 11, 13, 15, 65, 2, 66, 67fzindd 12495 . . 3 ((𝑘 ∈ (0..^𝑇) ∧ (𝑡 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑡𝑡𝑇)) → (𝐵𝑘) < (𝐵𝑡))
695, 68sylbida 592 . 2 ((𝑘 ∈ (0..^𝑇) ∧ 𝑡 ∈ ((𝑘 + 1)...𝑇)) → (𝐵𝑘) < (𝐵𝑡))
7069rgen2 3191 1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵𝑘) < (𝐵𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  cop 4577   class class class wbr 5087   × cxp 5605  cfv 6465  (class class class)co 7315  cr 10943  0cc0 10944  1c1 10945   + caddc 10947  *cxr 11081   < clt 11082  cle 11083  cz 12392  ...cfz 13312  ..^cfzo 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator