Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oadif1 Structured version   Visualization version   GIF version

Theorem oadif1 43478
Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oadif1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥

Proof of Theorem oadif1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 oacl 8456 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 onelon 6337 . . . . . . . . . . 11 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
42, 3sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
5 ontri1 6346 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
61, 4, 5syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
76pm5.32da 579 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
8 ancom 460 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵)))
97, 8bitr3di 286 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))))
10 oawordex2 43424 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
119, 10sylbida 592 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
12 eqcom 2738 . . . . . . 7 ((𝐴 +o 𝑏) = 𝑦𝑦 = (𝐴 +o 𝑏))
1312rexbii 3079 . . . . . 6 (∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦 ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1411, 13sylib 218 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1514ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
16 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 = (𝐴 +o 𝑏))
17 oaordi 8467 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1817ancoms 458 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1918imp 406 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2019adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2116, 20eqeltrd 2831 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 ∈ (𝐴 +o 𝐵))
22 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
23 onelon 6337 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑏𝐵) → 𝑏 ∈ On)
2422, 23sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝑏 ∈ On)
25 oaword1 8473 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑏))
261, 24, 25syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝐴 ⊆ (𝐴 +o 𝑏))
27 oacl 8456 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 +o 𝑏) ∈ On)
281, 24, 27syl2an2r 685 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ On)
29 ontri1 6346 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐴 +o 𝑏) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
301, 28, 29syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
3126, 30mpbid 232 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3231adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3316, 32eqneltrd 2851 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ 𝑦𝐴)
3421, 33jca 511 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
3534rexlimdva2 3135 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
3615, 35impbid 212 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
37 eldif 3907 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
38 vex 3440 . . . 4 𝑦 ∈ V
39 eqeq1 2735 . . . . 5 (𝑥 = 𝑦 → (𝑥 = (𝐴 +o 𝑏) ↔ 𝑦 = (𝐴 +o 𝑏)))
4039rexbidv 3156 . . . 4 (𝑥 = 𝑦 → (∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
4138, 40elab 3630 . . 3 (𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)} ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
4236, 37, 413bitr4g 314 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)}))
4342eqrdv 2729 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  cdif 3894  wss 3897  Oncon0 6312  (class class class)co 7352   +o coa 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395
This theorem is referenced by:  oaun2  43479  oaun3  43480
  Copyright terms: Public domain W3C validator