Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) |
2 | | oacl 8533 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
3 | | onelon 6382 |
. . . . . . . . . . 11
⊢ (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On) |
4 | 2, 3 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On) |
5 | | ontri1 6391 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) |
6 | 1, 4, 5 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → (𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴)) |
7 | 6 | pm5.32da 578 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴 ⊆ 𝑦) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴))) |
8 | | ancom 460 |
. . . . . . . 8
⊢ ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴 ⊆ 𝑦) ↔ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 +o 𝐵))) |
9 | 7, 8 | bitr3di 286 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) ↔ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 +o 𝐵)))) |
10 | | oawordex2 42633 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 +o 𝐵))) → ∃𝑏 ∈ 𝐵 (𝐴 +o 𝑏) = 𝑦) |
11 | 9, 10 | sylbida 591 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴)) → ∃𝑏 ∈ 𝐵 (𝐴 +o 𝑏) = 𝑦) |
12 | | eqcom 2733 |
. . . . . . 7
⊢ ((𝐴 +o 𝑏) = 𝑦 ↔ 𝑦 = (𝐴 +o 𝑏)) |
13 | 12 | rexbii 3088 |
. . . . . 6
⊢
(∃𝑏 ∈
𝐵 (𝐴 +o 𝑏) = 𝑦 ↔ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)) |
14 | 11, 13 | sylib 217 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)) |
15 | 14 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏))) |
16 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 = (𝐴 +o 𝑏)) |
17 | | oaordi 8544 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))) |
18 | 17 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))) |
19 | 18 | imp 406 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)) |
21 | 16, 20 | eqeltrd 2827 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 ∈ (𝐴 +o 𝐵)) |
22 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) |
23 | | onelon 6382 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ On) |
24 | 22, 23 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ On) |
25 | | oaword1 8550 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑏)) |
26 | 1, 24, 25 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → 𝐴 ⊆ (𝐴 +o 𝑏)) |
27 | | oacl 8533 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 +o 𝑏) ∈ On) |
28 | 1, 24, 27 | syl2an2r 682 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → (𝐴 +o 𝑏) ∈ On) |
29 | | ontri1 6391 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝐴 +o 𝑏) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴)) |
30 | 1, 28, 29 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴)) |
31 | 26, 30 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) → ¬ (𝐴 +o 𝑏) ∈ 𝐴) |
32 | 31 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ (𝐴 +o 𝑏) ∈ 𝐴) |
33 | 16, 32 | eqneltrd 2847 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ 𝑦 ∈ 𝐴) |
34 | 21, 33 | jca 511 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴)) |
35 | 34 | rexlimdva2 3151 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴))) |
36 | 15, 35 | impbid 211 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) ↔ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏))) |
37 | | eldif 3953 |
. . 3
⊢ (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦 ∈ 𝐴)) |
38 | | vex 3472 |
. . . 4
⊢ 𝑦 ∈ V |
39 | | eqeq1 2730 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 = (𝐴 +o 𝑏) ↔ 𝑦 = (𝐴 +o 𝑏))) |
40 | 39 | rexbidv 3172 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏) ↔ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏))) |
41 | 38, 40 | elab 3663 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)} ↔ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)) |
42 | 36, 37, 41 | 3bitr4g 314 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝑦 ∈ {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)})) |
43 | 42 | eqrdv 2724 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)}) |