Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oadif1 Structured version   Visualization version   GIF version

Theorem oadif1 42115
Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oadif1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥

Proof of Theorem oadif1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 oacl 8531 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 onelon 6386 . . . . . . . . . . 11 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
42, 3sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
5 ontri1 6395 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
61, 4, 5syl2an2r 683 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
76pm5.32da 579 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
8 ancom 461 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵)))
97, 8bitr3di 285 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))))
10 oawordex2 42061 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
119, 10sylbida 592 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
12 eqcom 2739 . . . . . . 7 ((𝐴 +o 𝑏) = 𝑦𝑦 = (𝐴 +o 𝑏))
1312rexbii 3094 . . . . . 6 (∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦 ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1411, 13sylib 217 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1514ex 413 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
16 simpr 485 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 = (𝐴 +o 𝑏))
17 oaordi 8542 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1817ancoms 459 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1918imp 407 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2019adantr 481 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2116, 20eqeltrd 2833 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 ∈ (𝐴 +o 𝐵))
22 simpr 485 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
23 onelon 6386 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑏𝐵) → 𝑏 ∈ On)
2422, 23sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝑏 ∈ On)
25 oaword1 8548 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑏))
261, 24, 25syl2an2r 683 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝐴 ⊆ (𝐴 +o 𝑏))
27 oacl 8531 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 +o 𝑏) ∈ On)
281, 24, 27syl2an2r 683 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ On)
29 ontri1 6395 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐴 +o 𝑏) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
301, 28, 29syl2an2r 683 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
3126, 30mpbid 231 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3231adantr 481 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3316, 32eqneltrd 2853 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ 𝑦𝐴)
3421, 33jca 512 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
3534rexlimdva2 3157 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
3615, 35impbid 211 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
37 eldif 3957 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
38 vex 3478 . . . 4 𝑦 ∈ V
39 eqeq1 2736 . . . . 5 (𝑥 = 𝑦 → (𝑥 = (𝐴 +o 𝑏) ↔ 𝑦 = (𝐴 +o 𝑏)))
4039rexbidv 3178 . . . 4 (𝑥 = 𝑦 → (∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
4138, 40elab 3667 . . 3 (𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)} ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
4236, 37, 413bitr4g 313 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)}))
4342eqrdv 2730 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  cdif 3944  wss 3947  Oncon0 6361  (class class class)co 7405   +o coa 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-oadd 8466
This theorem is referenced by:  oaun2  42116  oaun3  42117
  Copyright terms: Public domain W3C validator