Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oadif1 Structured version   Visualization version   GIF version

Theorem oadif1 43369
Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oadif1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥

Proof of Theorem oadif1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 oacl 8571 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 onelon 6410 . . . . . . . . . . 11 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
42, 3sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → 𝑦 ∈ On)
5 ontri1 6419 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
61, 4, 5syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ (𝐴 +o 𝐵)) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
76pm5.32da 579 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
8 ancom 460 . . . . . . . 8 ((𝑦 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝑦) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵)))
97, 8bitr3di 286 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))))
10 oawordex2 43315 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝑦𝑦 ∈ (𝐴 +o 𝐵))) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
119, 10sylbida 592 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦)
12 eqcom 2741 . . . . . . 7 ((𝐴 +o 𝑏) = 𝑦𝑦 = (𝐴 +o 𝑏))
1312rexbii 3091 . . . . . 6 (∃𝑏𝐵 (𝐴 +o 𝑏) = 𝑦 ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1411, 13sylib 218 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
1514ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
16 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 = (𝐴 +o 𝑏))
17 oaordi 8582 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1817ancoms 458 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
1918imp 406 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2019adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
2116, 20eqeltrd 2838 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → 𝑦 ∈ (𝐴 +o 𝐵))
22 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
23 onelon 6410 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑏𝐵) → 𝑏 ∈ On)
2422, 23sylan 580 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝑏 ∈ On)
25 oaword1 8588 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝑏))
261, 24, 25syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → 𝐴 ⊆ (𝐴 +o 𝑏))
27 oacl 8571 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 +o 𝑏) ∈ On)
281, 24, 27syl2an2r 685 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 +o 𝑏) ∈ On)
29 ontri1 6419 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐴 +o 𝑏) ∈ On) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
301, 28, 29syl2an2r 685 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → (𝐴 ⊆ (𝐴 +o 𝑏) ↔ ¬ (𝐴 +o 𝑏) ∈ 𝐴))
3126, 30mpbid 232 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3231adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ (𝐴 +o 𝑏) ∈ 𝐴)
3316, 32eqneltrd 2858 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → ¬ 𝑦𝐴)
3421, 33jca 511 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑏𝐵) ∧ 𝑦 = (𝐴 +o 𝑏)) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
3534rexlimdva2 3154 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏) → (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴)))
3615, 35impbid 212 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
37 eldif 3972 . . 3 (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +o 𝐵) ∧ ¬ 𝑦𝐴))
38 vex 3481 . . . 4 𝑦 ∈ V
39 eqeq1 2738 . . . . 5 (𝑥 = 𝑦 → (𝑥 = (𝐴 +o 𝑏) ↔ 𝑦 = (𝐴 +o 𝑏)))
4039rexbidv 3176 . . . 4 (𝑥 = 𝑦 → (∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)))
4138, 40elab 3680 . . 3 (𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)} ↔ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏))
4236, 37, 413bitr4g 314 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ 𝑦 ∈ {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)}))
4342eqrdv 2732 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏𝐵 𝑥 = (𝐴 +o 𝑏)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  cdif 3959  wss 3962  Oncon0 6385  (class class class)co 7430   +o coa 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-oadd 8508
This theorem is referenced by:  oaun2  43370  oaun3  43371
  Copyright terms: Public domain W3C validator