MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscan2d Structured version   Visualization version   GIF version

Theorem mulscan2d 28089
Description: Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
mulscan2d.1 (𝜑𝐴 No )
mulscan2d.2 (𝜑𝐵 No )
mulscan2d.3 (𝜑𝐶 No )
mulscan2d.4 (𝜑𝐶 ≠ 0s )
Assertion
Ref Expression
mulscan2d (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem mulscan2d
StepHypRef Expression
1 mulscan2d.3 . . . . 5 (𝜑𝐶 No )
2 0sno 27745 . . . . 5 0s No
3 sltneg 27958 . . . . 5 ((𝐶 No ∧ 0s No ) → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
41, 2, 3sylancl 586 . . . 4 (𝜑 → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
5 negs0s 27939 . . . . 5 ( -us ‘ 0s ) = 0s
65breq1i 5117 . . . 4 (( -us ‘ 0s ) <s ( -us𝐶) ↔ 0s <s ( -us𝐶))
74, 6bitrdi 287 . . 3 (𝜑 → (𝐶 <s 0s ↔ 0s <s ( -us𝐶)))
8 mulscan2d.1 . . . . . . . 8 (𝜑𝐴 No )
98, 1mulnegs2d 28071 . . . . . . 7 (𝜑 → (𝐴 ·s ( -us𝐶)) = ( -us ‘(𝐴 ·s 𝐶)))
10 mulscan2d.2 . . . . . . . 8 (𝜑𝐵 No )
1110, 1mulnegs2d 28071 . . . . . . 7 (𝜑 → (𝐵 ·s ( -us𝐶)) = ( -us ‘(𝐵 ·s 𝐶)))
129, 11eqeq12d 2746 . . . . . 6 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ ( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶))))
138, 1mulscld 28045 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
1410, 1mulscld 28045 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
15 negs11 27962 . . . . . . 7 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1613, 14, 15syl2anc 584 . . . . . 6 (𝜑 → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1712, 16bitrd 279 . . . . 5 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1817adantr 480 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
198adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐴 No )
2010adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐵 No )
211negscld 27950 . . . . . 6 (𝜑 → ( -us𝐶) ∈ No )
2221adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → ( -us𝐶) ∈ No )
23 simpr 484 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 0s <s ( -us𝐶))
2419, 20, 22, 23mulscan2dlem 28088 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ 𝐴 = 𝐵))
2518, 24bitr3d 281 . . 3 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
267, 25sylbida 592 . 2 ((𝜑𝐶 <s 0s ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
278adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐴 No )
2810adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐵 No )
291adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐶 No )
30 simpr 484 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶)
3127, 28, 29, 30mulscan2dlem 28088 . 2 ((𝜑 ∧ 0s <s 𝐶) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
32 mulscan2d.4 . . 3 (𝜑𝐶 ≠ 0s )
33 slttrine 27670 . . . 4 ((𝐶 No ∧ 0s No ) → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
341, 2, 33sylancl 586 . . 3 (𝜑 → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
3532, 34mpbid 232 . 2 (𝜑 → (𝐶 <s 0s ∨ 0s <s 𝐶))
3626, 31, 35mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   0s c0s 27741   -us cnegs 27932   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017
This theorem is referenced by:  mulscan1d  28090  muls0ord  28095
  Copyright terms: Public domain W3C validator