MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscan2d Structured version   Visualization version   GIF version

Theorem mulscan2d 28116
Description: Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
mulscan2d.1 (𝜑𝐴 No )
mulscan2d.2 (𝜑𝐵 No )
mulscan2d.3 (𝜑𝐶 No )
mulscan2d.4 (𝜑𝐶 ≠ 0s )
Assertion
Ref Expression
mulscan2d (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem mulscan2d
StepHypRef Expression
1 mulscan2d.3 . . . . 5 (𝜑𝐶 No )
2 0sno 27768 . . . . 5 0s No
3 sltneg 27985 . . . . 5 ((𝐶 No ∧ 0s No ) → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
41, 2, 3sylancl 586 . . . 4 (𝜑 → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
5 negs0s 27966 . . . . 5 ( -us ‘ 0s ) = 0s
65breq1i 5098 . . . 4 (( -us ‘ 0s ) <s ( -us𝐶) ↔ 0s <s ( -us𝐶))
74, 6bitrdi 287 . . 3 (𝜑 → (𝐶 <s 0s ↔ 0s <s ( -us𝐶)))
8 mulscan2d.1 . . . . . . . 8 (𝜑𝐴 No )
98, 1mulnegs2d 28098 . . . . . . 7 (𝜑 → (𝐴 ·s ( -us𝐶)) = ( -us ‘(𝐴 ·s 𝐶)))
10 mulscan2d.2 . . . . . . . 8 (𝜑𝐵 No )
1110, 1mulnegs2d 28098 . . . . . . 7 (𝜑 → (𝐵 ·s ( -us𝐶)) = ( -us ‘(𝐵 ·s 𝐶)))
129, 11eqeq12d 2747 . . . . . 6 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ ( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶))))
138, 1mulscld 28072 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
1410, 1mulscld 28072 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
15 negs11 27989 . . . . . . 7 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1613, 14, 15syl2anc 584 . . . . . 6 (𝜑 → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1712, 16bitrd 279 . . . . 5 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1817adantr 480 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
198adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐴 No )
2010adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐵 No )
211negscld 27977 . . . . . 6 (𝜑 → ( -us𝐶) ∈ No )
2221adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → ( -us𝐶) ∈ No )
23 simpr 484 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 0s <s ( -us𝐶))
2419, 20, 22, 23mulscan2dlem 28115 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ 𝐴 = 𝐵))
2518, 24bitr3d 281 . . 3 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
267, 25sylbida 592 . 2 ((𝜑𝐶 <s 0s ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
278adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐴 No )
2810adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐵 No )
291adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐶 No )
30 simpr 484 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶)
3127, 28, 29, 30mulscan2dlem 28115 . 2 ((𝜑 ∧ 0s <s 𝐶) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
32 mulscan2d.4 . . 3 (𝜑𝐶 ≠ 0s )
33 slttrine 27688 . . . 4 ((𝐶 No ∧ 0s No ) → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
341, 2, 33sylancl 586 . . 3 (𝜑 → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
3532, 34mpbid 232 . 2 (𝜑 → (𝐶 <s 0s ∨ 0s <s 𝐶))
3626, 31, 35mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346   No csur 27576   <s cslt 27577   0s c0s 27764   -us cnegs 27959   ·s cmuls 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044
This theorem is referenced by:  mulscan1d  28117  muls0ord  28122
  Copyright terms: Public domain W3C validator