Proof of Theorem mulscan2d
| Step | Hyp | Ref
| Expression |
| 1 | | mulscan2d.3 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ No
) |
| 2 | | 0sno 27790 |
. . . . 5
⊢
0s ∈ No |
| 3 | | sltneg 28003 |
. . . . 5
⊢ ((𝐶 ∈
No ∧ 0s ∈ No ) →
(𝐶 <s 0s
↔ ( -us ‘ 0s ) <s ( -us
‘𝐶))) |
| 4 | 1, 2, 3 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐶 <s 0s ↔ ( -us
‘ 0s ) <s ( -us ‘𝐶))) |
| 5 | | negs0s 27984 |
. . . . 5
⊢ (
-us ‘ 0s ) = 0s |
| 6 | 5 | breq1i 5126 |
. . . 4
⊢ ((
-us ‘ 0s ) <s ( -us ‘𝐶) ↔ 0s <s (
-us ‘𝐶)) |
| 7 | 4, 6 | bitrdi 287 |
. . 3
⊢ (𝜑 → (𝐶 <s 0s ↔ 0s
<s ( -us ‘𝐶))) |
| 8 | | mulscan2d.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ No
) |
| 9 | 8, 1 | mulnegs2d 28116 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ·s ( -us
‘𝐶)) = (
-us ‘(𝐴
·s 𝐶))) |
| 10 | | mulscan2d.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ No
) |
| 11 | 10, 1 | mulnegs2d 28116 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ·s ( -us
‘𝐶)) = (
-us ‘(𝐵
·s 𝐶))) |
| 12 | 9, 11 | eqeq12d 2751 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ·s ( -us
‘𝐶)) = (𝐵 ·s (
-us ‘𝐶))
↔ ( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)))) |
| 13 | 8, 1 | mulscld 28090 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No
) |
| 14 | 10, 1 | mulscld 28090 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No
) |
| 15 | | negs11 28007 |
. . . . . . 7
⊢ (((𝐴 ·s 𝐶) ∈
No ∧ (𝐵
·s 𝐶)
∈ No ) → (( -us
‘(𝐴
·s 𝐶)) =
( -us ‘(𝐵
·s 𝐶))
↔ (𝐴
·s 𝐶) =
(𝐵 ·s
𝐶))) |
| 16 | 13, 14, 15 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (( -us
‘(𝐴
·s 𝐶)) =
( -us ‘(𝐵
·s 𝐶))
↔ (𝐴
·s 𝐶) =
(𝐵 ·s
𝐶))) |
| 17 | 12, 16 | bitrd 279 |
. . . . 5
⊢ (𝜑 → ((𝐴 ·s ( -us
‘𝐶)) = (𝐵 ·s (
-us ‘𝐶))
↔ (𝐴
·s 𝐶) =
(𝐵 ·s
𝐶))) |
| 18 | 17 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ ((𝐴
·s ( -us ‘𝐶)) = (𝐵 ·s ( -us
‘𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶))) |
| 19 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ 𝐴 ∈ No ) |
| 20 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ 𝐵 ∈ No ) |
| 21 | 1 | negscld 27995 |
. . . . . 6
⊢ (𝜑 → ( -us
‘𝐶) ∈ No ) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ ( -us ‘𝐶) ∈ No
) |
| 23 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ 0s <s ( -us ‘𝐶)) |
| 24 | 19, 20, 22, 23 | mulscan2dlem 28133 |
. . . 4
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ ((𝐴
·s ( -us ‘𝐶)) = (𝐵 ·s ( -us
‘𝐶)) ↔ 𝐴 = 𝐵)) |
| 25 | 18, 24 | bitr3d 281 |
. . 3
⊢ ((𝜑 ∧ 0s <s (
-us ‘𝐶))
→ ((𝐴
·s 𝐶) =
(𝐵 ·s
𝐶) ↔ 𝐴 = 𝐵)) |
| 26 | 7, 25 | sylbida 592 |
. 2
⊢ ((𝜑 ∧ 𝐶 <s 0s ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) |
| 27 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ∈ No
) |
| 28 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐵 ∈ No
) |
| 29 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐶 ∈ No
) |
| 30 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 0s <s 𝐶) → 0s <s
𝐶) |
| 31 | 27, 28, 29, 30 | mulscan2dlem 28133 |
. 2
⊢ ((𝜑 ∧ 0s <s 𝐶) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) |
| 32 | | mulscan2d.4 |
. . 3
⊢ (𝜑 → 𝐶 ≠ 0s ) |
| 33 | | slttrine 27715 |
. . . 4
⊢ ((𝐶 ∈
No ∧ 0s ∈ No ) →
(𝐶 ≠ 0s
↔ (𝐶 <s
0s ∨ 0s <s 𝐶))) |
| 34 | 1, 2, 33 | sylancl 586 |
. . 3
⊢ (𝜑 → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨
0s <s 𝐶))) |
| 35 | 32, 34 | mpbid 232 |
. 2
⊢ (𝜑 → (𝐶 <s 0s ∨ 0s
<s 𝐶)) |
| 36 | 26, 31, 35 | mpjaodan 960 |
1
⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) |