MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscan2d Structured version   Visualization version   GIF version

Theorem mulscan2d 28082
Description: Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
mulscan2d.1 (𝜑𝐴 No )
mulscan2d.2 (𝜑𝐵 No )
mulscan2d.3 (𝜑𝐶 No )
mulscan2d.4 (𝜑𝐶 ≠ 0s )
Assertion
Ref Expression
mulscan2d (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem mulscan2d
StepHypRef Expression
1 mulscan2d.3 . . . . 5 (𝜑𝐶 No )
2 0sno 27738 . . . . 5 0s No
3 sltneg 27951 . . . . 5 ((𝐶 No ∧ 0s No ) → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
41, 2, 3sylancl 586 . . . 4 (𝜑 → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶)))
5 negs0s 27932 . . . . 5 ( -us ‘ 0s ) = 0s
65breq1i 5114 . . . 4 (( -us ‘ 0s ) <s ( -us𝐶) ↔ 0s <s ( -us𝐶))
74, 6bitrdi 287 . . 3 (𝜑 → (𝐶 <s 0s ↔ 0s <s ( -us𝐶)))
8 mulscan2d.1 . . . . . . . 8 (𝜑𝐴 No )
98, 1mulnegs2d 28064 . . . . . . 7 (𝜑 → (𝐴 ·s ( -us𝐶)) = ( -us ‘(𝐴 ·s 𝐶)))
10 mulscan2d.2 . . . . . . . 8 (𝜑𝐵 No )
1110, 1mulnegs2d 28064 . . . . . . 7 (𝜑 → (𝐵 ·s ( -us𝐶)) = ( -us ‘(𝐵 ·s 𝐶)))
129, 11eqeq12d 2745 . . . . . 6 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ ( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶))))
138, 1mulscld 28038 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
1410, 1mulscld 28038 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
15 negs11 27955 . . . . . . 7 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1613, 14, 15syl2anc 584 . . . . . 6 (𝜑 → (( -us ‘(𝐴 ·s 𝐶)) = ( -us ‘(𝐵 ·s 𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1712, 16bitrd 279 . . . . 5 (𝜑 → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
1817adantr 480 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)))
198adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐴 No )
2010adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 𝐵 No )
211negscld 27943 . . . . . 6 (𝜑 → ( -us𝐶) ∈ No )
2221adantr 480 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → ( -us𝐶) ∈ No )
23 simpr 484 . . . . 5 ((𝜑 ∧ 0s <s ( -us𝐶)) → 0s <s ( -us𝐶))
2419, 20, 22, 23mulscan2dlem 28081 . . . 4 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s ( -us𝐶)) = (𝐵 ·s ( -us𝐶)) ↔ 𝐴 = 𝐵))
2518, 24bitr3d 281 . . 3 ((𝜑 ∧ 0s <s ( -us𝐶)) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
267, 25sylbida 592 . 2 ((𝜑𝐶 <s 0s ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
278adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐴 No )
2810adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐵 No )
291adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐶 No )
30 simpr 484 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶)
3127, 28, 29, 30mulscan2dlem 28081 . 2 ((𝜑 ∧ 0s <s 𝐶) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
32 mulscan2d.4 . . 3 (𝜑𝐶 ≠ 0s )
33 slttrine 27663 . . . 4 ((𝐶 No ∧ 0s No ) → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
341, 2, 33sylancl 586 . . 3 (𝜑 → (𝐶 ≠ 0s ↔ (𝐶 <s 0s ∨ 0s <s 𝐶)))
3532, 34mpbid 232 . 2 (𝜑 → (𝐶 <s 0s ∨ 0s <s 𝐶))
3626, 31, 35mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <s cslt 27552   0s c0s 27734   -us cnegs 27925   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010
This theorem is referenced by:  mulscan1d  28083  muls0ord  28088
  Copyright terms: Public domain W3C validator