![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpidm | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm | ⊢ {𝐴, 𝐴, 𝐴} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpidm12 4759 | . 2 ⊢ {𝐴, 𝐴, 𝐴} = {𝐴, 𝐴} | |
2 | dfsn2 4641 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
3 | 1, 2 | eqtr4i 2762 | 1 ⊢ {𝐴, 𝐴, 𝐴} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {csn 4628 {cpr 4630 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-pr 4631 df-tp 4633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |