MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm Structured version   Visualization version   GIF version

Theorem tpidm 4740
Description: Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm {𝐴, 𝐴, 𝐴} = {𝐴}

Proof of Theorem tpidm
StepHypRef Expression
1 tpidm12 4737 . 2 {𝐴, 𝐴, 𝐴} = {𝐴, 𝐴}
2 dfsn2 4621 . 2 {𝐴} = {𝐴, 𝐴}
31, 2eqtr4i 2760 1 {𝐴, 𝐴, 𝐴} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {csn 4608  {cpr 4610  {ctp 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-un 3938  df-pr 4611  df-tp 4613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator