MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm Structured version   Visualization version   GIF version

Theorem tpidm 4698
Description: Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm {𝐴, 𝐴, 𝐴} = {𝐴}

Proof of Theorem tpidm
StepHypRef Expression
1 tpidm12 4695 . 2 {𝐴, 𝐴, 𝐴} = {𝐴, 𝐴}
2 dfsn2 4578 . 2 {𝐴} = {𝐴, 𝐴}
31, 2eqtr4i 2767 1 {𝐴, 𝐴, 𝐴} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {csn 4565  {cpr 4567  {ctp 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-un 3897  df-pr 4568  df-tp 4570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator