MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm Structured version   Visualization version   GIF version

Theorem tpidm 4691
Description: Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm {𝐴, 𝐴, 𝐴} = {𝐴}

Proof of Theorem tpidm
StepHypRef Expression
1 tpidm12 4688 . 2 {𝐴, 𝐴, 𝐴} = {𝐴, 𝐴}
2 dfsn2 4571 . 2 {𝐴} = {𝐴, 𝐴}
31, 2eqtr4i 2770 1 {𝐴, 𝐴, 𝐴} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  {csn 4558  {cpr 4560  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-un 3889  df-pr 4561  df-tp 4563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator