MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm23 Structured version   Visualization version   GIF version

Theorem tpidm23 4782
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 4774 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 4780 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 4757 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2772 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cpr 4650  {ctp 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651  df-tp 4653
This theorem is referenced by:  tppreq3  4784  fntpb  7246  hashtpg  14534  hash3tpde  14542
  Copyright terms: Public domain W3C validator