| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpidm23 | Structured version Visualization version GIF version | ||
| Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tpidm23 | ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot 4730 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴} | |
| 2 | tpidm12 4736 | . 2 ⊢ {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴} | |
| 3 | prcom 4713 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 1, 2, 3 | 3eqtri 2763 | 1 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cpr 4608 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: tppreq3 4740 fntpb 7206 hashtpg 14508 hash3tpde 14516 |
| Copyright terms: Public domain | W3C validator |