MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm23 Structured version   Visualization version   GIF version

Theorem tpidm23 4738
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 4730 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 4736 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 4713 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2763 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cpr 4608  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by:  tppreq3  4740  fntpb  7206  hashtpg  14508  hash3tpde  14516
  Copyright terms: Public domain W3C validator