MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm23 Structured version   Visualization version   GIF version

Theorem tpidm23 4753
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 4745 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 4751 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 4728 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2756 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cpr 4622  {ctp 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3945  df-sn 4621  df-pr 4623  df-tp 4625
This theorem is referenced by:  tppreq3  4755  fntpb  7202  hashtpg  14442
  Copyright terms: Public domain W3C validator