MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm23 Structured version   Visualization version   GIF version

Theorem tpidm23 4690
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 4682 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 4688 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 4665 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2770 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cpr 4560  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  tppreq3  4692  fntpb  7067  hashtpg  14127
  Copyright terms: Public domain W3C validator