Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpidm23 | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm23 | ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 4682 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴} | |
2 | tpidm12 4688 | . 2 ⊢ {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴} | |
3 | prcom 4665 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 1, 2, 3 | 3eqtri 2770 | 1 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: tppreq3 4692 fntpb 7067 hashtpg 14127 |
Copyright terms: Public domain | W3C validator |