MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tppreq3 Structured version   Visualization version   GIF version

Theorem tppreq3 4652
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 4637 . . 3 (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵})
21eqcoms 2766 . 2 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵})
3 tpidm23 4650 . 2 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
42, 3eqtrdi 2809 1 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  {cpr 4524  {ctp 4526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-un 3863  df-sn 4523  df-pr 4525  df-tp 4527
This theorem is referenced by:  tpprceq3  4694  1to3vfriswmgr  28164
  Copyright terms: Public domain W3C validator