MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tppreq3 Structured version   Visualization version   GIF version

Theorem tppreq3 4741
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 4726 . . 3 (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵})
21eqcoms 2742 . 2 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵})
3 tpidm23 4739 . 2 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
42, 3eqtrdi 2785 1 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cpr 4610  {ctp 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-un 3938  df-sn 4609  df-pr 4611  df-tp 4613
This theorem is referenced by:  tpprceq3  4786  1to3vfriswmgr  30246
  Copyright terms: Public domain W3C validator