| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tppreq3 | Structured version Visualization version GIF version | ||
| Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| tppreq3 | ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq3 4726 | . . 3 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) | |
| 2 | 1 | eqcoms 2742 | . 2 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) |
| 3 | tpidm23 4739 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eqtrdi 2785 | 1 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {cpr 4610 {ctp 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-sn 4609 df-pr 4611 df-tp 4613 |
| This theorem is referenced by: tpprceq3 4786 1to3vfriswmgr 30246 |
| Copyright terms: Public domain | W3C validator |