| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tppreq3 | Structured version Visualization version GIF version | ||
| Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| tppreq3 | ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq3 4716 | . . 3 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) | |
| 2 | 1 | eqcoms 2738 | . 2 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) |
| 3 | tpidm23 4729 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eqtrdi 2781 | 1 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cpr 4599 {ctp 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-un 3927 df-sn 4598 df-pr 4600 df-tp 4602 |
| This theorem is referenced by: tpprceq3 4776 1to3vfriswmgr 30216 |
| Copyright terms: Public domain | W3C validator |