| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tppreq3 | Structured version Visualization version GIF version | ||
| Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| tppreq3 | ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq3 4697 | . . 3 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) | |
| 2 | 1 | eqcoms 2739 | . 2 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) |
| 3 | tpidm23 4710 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eqtrdi 2782 | 1 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cpr 4578 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: tpprceq3 4756 1to3vfriswmgr 30255 |
| Copyright terms: Public domain | W3C validator |