MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm12 Structured version   Visualization version   GIF version

Theorem tpidm12 4694
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 4577 . . 3 {𝐴} = {𝐴, 𝐴}
21uneq1i 4096 . 2 ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵})
3 df-pr 4567 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 df-tp 4569 . 2 {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵})
52, 3, 43eqtr4ri 2772 1 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3887  {csn 4564  {cpr 4566  {ctp 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1540  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3436  df-un 3894  df-pr 4567  df-tp 4569
This theorem is referenced by:  tpidm13  4695  tpidm23  4696  tpidm  4697  fntpb  7105  hashtpg  14227
  Copyright terms: Public domain W3C validator