![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpidm12 | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm12 | ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4634 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | uneq1i 4152 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵}) |
3 | df-pr 4624 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | df-tp 4626 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4ri 2763 | 1 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3939 {csn 4621 {cpr 4623 {ctp 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-pr 4624 df-tp 4626 |
This theorem is referenced by: tpidm13 4753 tpidm23 4754 tpidm 4755 fntpb 7203 hashtpg 14444 |
Copyright terms: Public domain | W3C validator |