MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm12 Structured version   Visualization version   GIF version

Theorem tpidm12 4727
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 4610 . . 3 {𝐴} = {𝐴, 𝐴}
21uneq1i 4135 . 2 ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵})
3 df-pr 4600 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 df-tp 4602 . 2 {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵})
52, 3, 43eqtr4ri 2764 1 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3920  {csn 4597  {cpr 4599  {ctp 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-un 3927  df-pr 4600  df-tp 4602
This theorem is referenced by:  tpidm13  4728  tpidm23  4729  tpidm  4730  fntpb  7190  hashtpg  14460  hash3tpde  14468
  Copyright terms: Public domain W3C validator