Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpidm12 | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm12 | ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4577 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | uneq1i 4096 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵}) |
3 | df-pr 4567 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | df-tp 4569 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4ri 2772 | 1 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3887 {csn 4564 {cpr 4566 {ctp 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-un 3894 df-pr 4567 df-tp 4569 |
This theorem is referenced by: tpidm13 4695 tpidm23 4696 tpidm 4697 fntpb 7105 hashtpg 14227 |
Copyright terms: Public domain | W3C validator |