| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpidm12 | Structured version Visualization version GIF version | ||
| Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tpidm12 | ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4584 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | uneq1i 4109 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵}) |
| 3 | df-pr 4574 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | df-tp 4576 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4ri 2765 | 1 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 {csn 4571 {cpr 4573 {ctp 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-pr 4574 df-tp 4576 |
| This theorem is referenced by: tpidm13 4704 tpidm23 4705 tpidm 4706 fntpb 7138 hashtpg 14387 hash3tpde 14395 |
| Copyright terms: Public domain | W3C validator |