MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm12 Structured version   Visualization version   GIF version

Theorem tpidm12 4703
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 4584 . . 3 {𝐴} = {𝐴, 𝐴}
21uneq1i 4109 . 2 ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵})
3 df-pr 4574 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 df-tp 4576 . 2 {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵})
52, 3, 43eqtr4ri 2765 1 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  {csn 4571  {cpr 4573  {ctp 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-pr 4574  df-tp 4576
This theorem is referenced by:  tpidm13  4704  tpidm23  4705  tpidm  4706  fntpb  7138  hashtpg  14387  hash3tpde  14395
  Copyright terms: Public domain W3C validator