![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4657. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4652 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4650 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4648 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3974 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1537 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4709 raltpg 4723 rextpg 4724 disjtpsn 4740 disjtp2 4741 tpeq1 4767 tpeq2 4768 tpeq3 4769 tpcoma 4775 tpass 4777 qdass 4778 tpidm12 4780 diftpsn3 4827 tpprceq3 4829 tppreqb 4830 snsstp1 4841 snsstp2 4842 snsstp3 4843 sstp 4861 tpss 4862 tpssi 4863 ord3ex 5405 dmtpop 6251 funtpg 6635 funtp 6637 fntpg 6640 funcnvtp 6643 fnimatpd 7008 ftpg 7192 fvtp1 7234 fvtp1g 7237 tpex 7783 fr3nr 7809 tpfi 9395 fztp 13642 hashtplei 14535 hashtpg 14536 hash3tpexb 14545 s3tpop 14960 s3rn 15015 sumtp 15799 bpoly3 16108 strle3 17209 estrreslem2 18209 estrres 18210 lsptpcl 21002 perfectlem2 27294 sltsolem1 27740 ex-un 30458 ex-ss 30461 ex-pw 30463 ex-hash 30487 prodtp 32833 gsumtp 33041 dvh4dimlem 41402 dvhdimlem 41403 dvh4dimN 41406 df3o2 43277 df3o3 43278 omcl3g 43298 onsucunitp 43337 oaun3 43346 tr3dom 43492 perfectALTVlem2 47598 isgrtri 47796 usgrexmpl2edg 47846 |
Copyright terms: Public domain | W3C validator |