Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4567. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4562 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4560 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4558 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3882 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1543 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4618 raltpg 4631 rextpg 4632 disjtpsn 4648 disjtp2 4649 tpeq1 4675 tpeq2 4676 tpeq3 4677 tpcoma 4683 tpass 4685 qdass 4686 tpidm12 4688 diftpsn3 4732 tpprceq3 4734 tppreqb 4735 snsstp1 4746 snsstp2 4747 snsstp3 4748 sstp 4764 tpss 4765 tpssi 4766 ord3ex 5304 dmtpop 6109 funtpg 6470 funtp 6472 fntpg 6475 funcnvtp 6478 ftpg 7007 fvtp1 7049 fvtp1g 7052 tpex 7572 fr3nr 7597 tpfi 8995 fztp 13216 hashtplei 14101 hashtpg 14102 s3tpop 14525 sumtp 15364 bpoly3 15671 strle3 16764 estrreslem2 17746 estrres 17747 lsptpcl 20131 perfectlem2 26258 ex-un 28664 ex-ss 28667 ex-pw 28669 ex-hash 28693 fnimatp 30891 prodtp 31018 sltsolem1 33780 dvh4dimlem 39363 dvhdimlem 39364 dvh4dimN 39367 tr3dom 41005 df3o2 41496 df3o3 41497 perfectALTVlem2 45035 |
Copyright terms: Public domain | W3C validator |