| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4617. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4612 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4610 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4608 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3931 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1539 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4668 raltpg 4680 rextpg 4681 disjtpsn 4697 disjtp2 4698 tpeq1 4724 tpeq2 4725 tpeq3 4726 tpcoma 4732 tpass 4734 qdass 4735 tpidm12 4737 diftpsn3 4784 tpprceq3 4786 tppreqb 4787 snsstp1 4798 snsstp2 4799 snsstp3 4800 sstp 4818 tpss 4819 tpssi 4820 ord3ex 5369 dmtpop 6220 funtpg 6602 funtp 6604 fntpg 6607 funcnvtp 6610 fnimatpd 6974 ftpg 7157 fvtp1 7198 fvtp1g 7201 tpex 7749 fr3nr 7775 tpfi 9348 fztp 13603 hashtplei 14506 hashtpg 14507 hash3tpexb 14516 s3tpop 14931 s3rn 14986 sumtp 15768 bpoly3 16077 strle3 17180 estrreslem2 18158 estrres 18159 lsptpcl 20950 perfectlem2 27229 sltsolem1 27675 ex-un 30390 ex-ss 30393 ex-pw 30395 ex-hash 30419 prodtp 32776 gsumtp 33007 dvh4dimlem 41386 dvhdimlem 41387 dvh4dimN 41390 df3o2 43271 df3o3 43272 omcl3g 43292 onsucunitp 43331 oaun3 43340 tr3dom 43486 perfectALTVlem2 47655 isgrtri 47856 usgrexmpl2edg 47934 |
| Copyright terms: Public domain | W3C validator |