![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4657. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4652 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4650 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4648 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3968 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1537 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4709 raltpg 4723 rextpg 4724 disjtpsn 4740 disjtp2 4741 tpeq1 4767 tpeq2 4768 tpeq3 4769 tpcoma 4775 tpass 4777 qdass 4778 tpidm12 4780 diftpsn3 4827 tpprceq3 4829 tppreqb 4830 snsstp1 4841 snsstp2 4842 snsstp3 4843 sstp 4861 tpss 4862 tpssi 4863 ord3ex 5408 dmtpop 6248 funtpg 6632 funtp 6634 fntpg 6637 funcnvtp 6640 fnimatpd 7004 ftpg 7188 fvtp1 7230 fvtp1g 7233 tpex 7777 fr3nr 7803 tpfi 9389 fztp 13636 hashtplei 14529 hashtpg 14530 hash3tpexb 14539 s3tpop 14954 s3rn 15009 sumtp 15793 bpoly3 16100 strle3 17202 estrreslem2 18202 estrres 18203 lsptpcl 20995 perfectlem2 27283 sltsolem1 27729 ex-un 30447 ex-ss 30450 ex-pw 30452 ex-hash 30476 prodtp 32823 gsumtp 33031 dvh4dimlem 41348 dvhdimlem 41349 dvh4dimN 41352 df3o2 43215 df3o3 43216 omcl3g 43236 onsucunitp 43275 oaun3 43284 tr3dom 43430 perfectALTVlem2 47528 isgrtri 47723 usgrexmpl2edg 47763 |
Copyright terms: Public domain | W3C validator |