| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4600. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4595 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4593 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4591 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3914 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1540 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4652 raltpg 4664 rextpg 4665 disjtpsn 4681 disjtp2 4682 tpeq1 4708 tpeq2 4709 tpeq3 4710 tpcoma 4716 tpass 4718 qdass 4719 tpidm12 4721 diftpsn3 4768 tpprceq3 4770 tppreqb 4771 snsstp1 4782 snsstp2 4783 snsstp3 4784 sstp 4802 tpss 4803 tpssi 4804 ord3ex 5344 dmtpop 6193 funtpg 6573 funtp 6575 fntpg 6578 funcnvtp 6581 fnimatpd 6947 ftpg 7130 fvtp1 7171 fvtp1g 7174 tpex 7724 fr3nr 7750 tpfi 9282 fztp 13547 hashtplei 14455 hashtpg 14456 hash3tpexb 14465 s3tpop 14881 s3rn 14936 sumtp 15721 bpoly3 16030 strle3 17136 estrreslem2 18105 estrres 18106 lsptpcl 20891 perfectlem2 27147 sltsolem1 27593 ex-un 30359 ex-ss 30362 ex-pw 30364 ex-hash 30388 tpssg 32472 prodtp 32758 gsumtp 33004 dvh4dimlem 41432 dvhdimlem 41433 dvh4dimN 41436 df3o2 43295 df3o3 43296 omcl3g 43316 onsucunitp 43355 oaun3 43364 tr3dom 43510 perfectALTVlem2 47713 isgrtri 47932 usgrexmpl2edg 48010 |
| Copyright terms: Public domain | W3C validator |