| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4582. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4577 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4575 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4573 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3895 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1541 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4636 raltpg 4648 rextpg 4649 disjtpsn 4665 disjtp2 4666 tpeq1 4692 tpeq2 4693 tpeq3 4694 tpcoma 4700 tpass 4702 qdass 4703 tpidm12 4705 diftpsn3 4751 tpprceq3 4753 tppreqb 4754 snsstp1 4765 snsstp2 4766 snsstp3 4767 sstp 4785 tpss 4786 tpssi 4787 ord3ex 5323 dmtpop 6165 funtpg 6536 funtp 6538 fntpg 6541 funcnvtp 6544 fnimatpd 6906 ftpg 7089 fvtp1 7129 fvtp1g 7132 tpex 7679 fr3nr 7705 tpfi 9210 fztp 13480 hashtplei 14391 hashtpg 14392 hash3tpexb 14401 s3tpop 14816 s3rn 14871 sumtp 15656 bpoly3 15965 strle3 17071 estrreslem2 18044 estrres 18045 lsptpcl 20912 perfectlem2 27168 sltsolem1 27614 ex-un 30404 ex-ss 30407 ex-pw 30409 ex-hash 30433 tpssg 32517 prodtp 32810 gsumtp 33038 dvh4dimlem 41552 dvhdimlem 41553 dvh4dimN 41556 df3o2 43416 df3o3 43417 omcl3g 43437 onsucunitp 43476 oaun3 43485 tr3dom 43631 perfectALTVlem2 47832 isgrtri 48053 usgrexmpl2edg 48139 |
| Copyright terms: Public domain | W3C validator |