![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4638. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4633 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4631 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4629 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3943 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1533 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4690 raltpg 4703 rextpg 4704 disjtpsn 4720 disjtp2 4721 tpeq1 4747 tpeq2 4748 tpeq3 4749 tpcoma 4755 tpass 4757 qdass 4758 tpidm12 4760 diftpsn3 4806 tpprceq3 4808 tppreqb 4809 snsstp1 4820 snsstp2 4821 snsstp3 4822 sstp 4838 tpss 4839 tpssi 4840 ord3ex 5386 dmtpop 6222 funtpg 6607 funtp 6609 fntpg 6612 funcnvtp 6615 ftpg 7163 fvtp1 7205 fvtp1g 7208 tpex 7748 fr3nr 7773 tpfi 9347 fztp 13589 hashtplei 14477 hashtpg 14478 s3tpop 14892 sumtp 15727 bpoly3 16034 strle3 17128 estrreslem2 18128 estrres 18129 lsptpcl 20867 perfectlem2 27193 sltsolem1 27638 ex-un 30290 ex-ss 30293 ex-pw 30295 ex-hash 30319 fnimatp 32520 prodtp 32647 dvh4dimlem 40985 dvhdimlem 40986 dvh4dimN 40989 df3o2 42807 df3o3 42808 omcl3g 42828 onsucunitp 42867 oaun3 42876 tr3dom 43023 perfectALTVlem2 47125 |
Copyright terms: Public domain | W3C validator |