![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4482 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4480 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4478 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3863 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1525 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4536 raltpg 4547 rextpg 4548 disjtpsn 4564 disjtp2 4565 tpeq1 4591 tpeq2 4592 tpeq3 4593 tpcoma 4599 tpass 4601 qdass 4602 tpidm12 4604 diftpsn3 4648 tpprceq3 4650 tppreqb 4651 snsstp1 4662 snsstp2 4663 snsstp3 4664 sstp 4680 tpss 4681 tpssi 4682 ord3ex 5185 dmtpop 5957 funtpg 6286 funtp 6288 fntpg 6291 funcnvtp 6294 ftpg 6788 fvtp1 6831 fvtp1g 6834 tpex 7334 fr3nr 7357 tpfi 8647 fztp 12817 hashtplei 13692 hashtpg 13693 s3tpop 14111 sumtp 14941 bpoly3 15249 strle3 16427 estrreslem2 17221 estrres 17222 lsptpcl 19445 perfectlem2 25492 ex-un 27891 ex-ss 27894 ex-pw 27896 ex-hash 27920 fnimatp 30109 prodtp 30223 sltsolem1 32791 dvh4dimlem 38131 dvhdimlem 38132 dvh4dimN 38135 tr3dom 39400 df3o2 39880 df3o3 39881 perfectALTVlem2 43391 |
Copyright terms: Public domain | W3C validator |