![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4641. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4636 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4634 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4632 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3962 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1538 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4692 raltpg 4704 rextpg 4705 disjtpsn 4721 disjtp2 4722 tpeq1 4748 tpeq2 4749 tpeq3 4750 tpcoma 4756 tpass 4758 qdass 4759 tpidm12 4761 diftpsn3 4808 tpprceq3 4810 tppreqb 4811 snsstp1 4822 snsstp2 4823 snsstp3 4824 sstp 4842 tpss 4843 tpssi 4844 ord3ex 5394 dmtpop 6243 funtpg 6626 funtp 6628 fntpg 6631 funcnvtp 6634 fnimatpd 6997 ftpg 7180 fvtp1 7219 fvtp1g 7222 tpex 7769 fr3nr 7795 tpfi 9369 fztp 13623 hashtplei 14526 hashtpg 14527 hash3tpexb 14536 s3tpop 14951 s3rn 15006 sumtp 15788 bpoly3 16097 strle3 17200 estrreslem2 18200 estrres 18201 lsptpcl 21001 perfectlem2 27297 sltsolem1 27743 ex-un 30466 ex-ss 30469 ex-pw 30471 ex-hash 30495 prodtp 32847 gsumtp 33057 dvh4dimlem 41438 dvhdimlem 41439 dvh4dimN 41442 df3o2 43317 df3o3 43318 omcl3g 43338 onsucunitp 43377 oaun3 43386 tr3dom 43532 perfectALTVlem2 47658 isgrtri 47859 usgrexmpl2edg 47937 |
Copyright terms: Public domain | W3C validator |