| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4594. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4589 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4587 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4585 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3909 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1540 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4646 raltpg 4658 rextpg 4659 disjtpsn 4675 disjtp2 4676 tpeq1 4702 tpeq2 4703 tpeq3 4704 tpcoma 4710 tpass 4712 qdass 4713 tpidm12 4715 diftpsn3 4762 tpprceq3 4764 tppreqb 4765 snsstp1 4776 snsstp2 4777 snsstp3 4778 sstp 4796 tpss 4797 tpssi 4798 ord3ex 5337 dmtpop 6179 funtpg 6555 funtp 6557 fntpg 6560 funcnvtp 6563 fnimatpd 6927 ftpg 7110 fvtp1 7151 fvtp1g 7154 tpex 7702 fr3nr 7728 tpfi 9252 fztp 13517 hashtplei 14425 hashtpg 14426 hash3tpexb 14435 s3tpop 14851 s3rn 14906 sumtp 15691 bpoly3 16000 strle3 17106 estrreslem2 18079 estrres 18080 lsptpcl 20917 perfectlem2 27174 sltsolem1 27620 ex-un 30403 ex-ss 30406 ex-pw 30408 ex-hash 30432 tpssg 32516 prodtp 32802 gsumtp 33041 dvh4dimlem 41430 dvhdimlem 41431 dvh4dimN 41434 df3o2 43295 df3o3 43296 omcl3g 43316 onsucunitp 43355 oaun3 43364 tr3dom 43510 perfectALTVlem2 47716 isgrtri 47935 usgrexmpl2edg 48013 |
| Copyright terms: Public domain | W3C validator |