Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4576. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4571 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4569 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4567 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3890 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1542 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4627 raltpg 4640 rextpg 4641 disjtpsn 4657 disjtp2 4658 tpeq1 4684 tpeq2 4685 tpeq3 4686 tpcoma 4692 tpass 4694 qdass 4695 tpidm12 4697 diftpsn3 4741 tpprceq3 4743 tppreqb 4744 snsstp1 4755 snsstp2 4756 snsstp3 4757 sstp 4773 tpss 4774 tpssi 4775 ord3ex 5314 dmtpop 6120 funtpg 6487 funtp 6489 fntpg 6492 funcnvtp 6495 ftpg 7025 fvtp1 7067 fvtp1g 7070 tpex 7591 fr3nr 7616 tpfi 9068 fztp 13311 hashtplei 14196 hashtpg 14197 s3tpop 14620 sumtp 15459 bpoly3 15766 strle3 16859 estrreslem2 17853 estrres 17854 lsptpcl 20239 perfectlem2 26376 ex-un 28784 ex-ss 28787 ex-pw 28789 ex-hash 28813 fnimatp 31010 prodtp 31137 sltsolem1 33874 dvh4dimlem 39453 dvhdimlem 39454 dvh4dimN 39457 tr3dom 41114 df3o2 41604 df3o3 41605 perfectALTVlem2 45143 |
Copyright terms: Public domain | W3C validator |