| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4606. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4601 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4599 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4597 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3920 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1540 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4658 raltpg 4670 rextpg 4671 disjtpsn 4687 disjtp2 4688 tpeq1 4714 tpeq2 4715 tpeq3 4716 tpcoma 4722 tpass 4724 qdass 4725 tpidm12 4727 diftpsn3 4774 tpprceq3 4776 tppreqb 4777 snsstp1 4788 snsstp2 4789 snsstp3 4790 sstp 4808 tpss 4809 tpssi 4810 ord3ex 5350 dmtpop 6199 funtpg 6579 funtp 6581 fntpg 6584 funcnvtp 6587 fnimatpd 6952 ftpg 7135 fvtp1 7176 fvtp1g 7179 tpex 7729 fr3nr 7755 tpfi 9294 fztp 13554 hashtplei 14459 hashtpg 14460 hash3tpexb 14469 s3tpop 14885 s3rn 14940 sumtp 15722 bpoly3 16031 strle3 17136 estrreslem2 18105 estrres 18106 lsptpcl 20891 perfectlem2 27148 sltsolem1 27594 ex-un 30360 ex-ss 30363 ex-pw 30365 ex-hash 30389 tpssg 32473 prodtp 32760 gsumtp 33006 dvh4dimlem 41429 dvhdimlem 41430 dvh4dimN 41433 df3o2 43274 df3o3 43275 omcl3g 43295 onsucunitp 43334 oaun3 43343 tr3dom 43489 perfectALTVlem2 47678 isgrtri 47897 usgrexmpl2edg 47975 |
| Copyright terms: Public domain | W3C validator |