| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version | ||
| Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4586. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 4581 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 4579 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 4577 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3901 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1540 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltpg 4638 raltpg 4650 rextpg 4651 disjtpsn 4667 disjtp2 4668 tpeq1 4694 tpeq2 4695 tpeq3 4696 tpcoma 4702 tpass 4704 qdass 4705 tpidm12 4707 diftpsn3 4753 tpprceq3 4755 tppreqb 4756 snsstp1 4767 snsstp2 4768 snsstp3 4769 sstp 4787 tpss 4788 tpssi 4789 ord3ex 5326 dmtpop 6167 funtpg 6537 funtp 6539 fntpg 6542 funcnvtp 6545 fnimatpd 6907 ftpg 7090 fvtp1 7131 fvtp1g 7134 tpex 7682 fr3nr 7708 tpfi 9215 fztp 13483 hashtplei 14391 hashtpg 14392 hash3tpexb 14401 s3tpop 14816 s3rn 14871 sumtp 15656 bpoly3 15965 strle3 17071 estrreslem2 18044 estrres 18045 lsptpcl 20882 perfectlem2 27139 sltsolem1 27585 ex-un 30368 ex-ss 30371 ex-pw 30373 ex-hash 30397 tpssg 32481 prodtp 32773 gsumtp 33012 dvh4dimlem 41432 dvhdimlem 41433 dvh4dimN 41436 df3o2 43296 df3o3 43297 omcl3g 43317 onsucunitp 43356 oaun3 43365 tr3dom 43511 perfectALTVlem2 47716 isgrtri 47937 usgrexmpl2edg 48023 |
| Copyright terms: Public domain | W3C validator |