Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4570. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4565 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4563 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4561 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3885 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1539 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4621 raltpg 4634 rextpg 4635 disjtpsn 4651 disjtp2 4652 tpeq1 4678 tpeq2 4679 tpeq3 4680 tpcoma 4686 tpass 4688 qdass 4689 tpidm12 4691 diftpsn3 4735 tpprceq3 4737 tppreqb 4738 snsstp1 4749 snsstp2 4750 snsstp3 4751 sstp 4767 tpss 4768 tpssi 4769 ord3ex 5310 dmtpop 6121 funtpg 6489 funtp 6491 fntpg 6494 funcnvtp 6497 ftpg 7028 fvtp1 7070 fvtp1g 7073 tpex 7597 fr3nr 7622 tpfi 9090 fztp 13312 hashtplei 14198 hashtpg 14199 s3tpop 14622 sumtp 15461 bpoly3 15768 strle3 16861 estrreslem2 17855 estrres 17856 lsptpcl 20241 perfectlem2 26378 ex-un 28788 ex-ss 28791 ex-pw 28793 ex-hash 28817 fnimatp 31014 prodtp 31141 sltsolem1 33878 dvh4dimlem 39457 dvhdimlem 39458 dvh4dimN 39461 tr3dom 41135 df3o2 41634 df3o3 41635 perfectALTVlem2 45174 |
Copyright terms: Public domain | W3C validator |