![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4638. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4633 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4631 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4629 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3947 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1542 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4690 raltpg 4703 rextpg 4704 disjtpsn 4720 disjtp2 4721 tpeq1 4747 tpeq2 4748 tpeq3 4749 tpcoma 4755 tpass 4757 qdass 4758 tpidm12 4760 diftpsn3 4806 tpprceq3 4808 tppreqb 4809 snsstp1 4820 snsstp2 4821 snsstp3 4822 sstp 4838 tpss 4839 tpssi 4840 ord3ex 5386 dmtpop 6218 funtpg 6604 funtp 6606 fntpg 6609 funcnvtp 6612 ftpg 7154 fvtp1 7196 fvtp1g 7199 tpex 7734 fr3nr 7759 tpfi 9323 fztp 13557 hashtplei 14445 hashtpg 14446 s3tpop 14860 sumtp 15695 bpoly3 16002 strle3 17093 estrreslem2 18090 estrres 18091 lsptpcl 20590 perfectlem2 26733 sltsolem1 27178 ex-un 29677 ex-ss 29680 ex-pw 29682 ex-hash 29706 fnimatp 31902 prodtp 32033 dvh4dimlem 40314 dvhdimlem 40315 dvh4dimN 40318 df3o2 42063 df3o3 42064 omcl3g 42084 onsucunitp 42123 oaun3 42132 tr3dom 42279 perfectALTVlem2 46390 |
Copyright terms: Public domain | W3C validator |