![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tp | Structured version Visualization version GIF version |
Description: Define unordered triple
of classes. Definition of [Enderton] p. 19.
Note: ordered triples are a completely different object defined below in df-ot 4633. As with all tuples, when the term "triple" is used without qualifier, it means "ordered triple". (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 4628 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 4626 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 4624 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3942 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1534 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff setvar class |
This definition is referenced by: eltpg 4685 raltpg 4698 rextpg 4699 disjtpsn 4715 disjtp2 4716 tpeq1 4742 tpeq2 4743 tpeq3 4744 tpcoma 4750 tpass 4752 qdass 4753 tpidm12 4755 diftpsn3 4801 tpprceq3 4803 tppreqb 4804 snsstp1 4815 snsstp2 4816 snsstp3 4817 sstp 4833 tpss 4834 tpssi 4835 ord3ex 5381 dmtpop 6216 funtpg 6602 funtp 6604 fntpg 6607 funcnvtp 6610 ftpg 7159 fvtp1 7201 fvtp1g 7204 tpex 7743 fr3nr 7768 tpfi 9339 fztp 13581 hashtplei 14469 hashtpg 14470 s3tpop 14884 sumtp 15719 bpoly3 16026 strle3 17120 estrreslem2 18120 estrres 18121 lsptpcl 20852 perfectlem2 27150 sltsolem1 27595 ex-un 30221 ex-ss 30224 ex-pw 30226 ex-hash 30250 fnimatp 32446 prodtp 32572 dvh4dimlem 40853 dvhdimlem 40854 dvh4dimN 40857 df3o2 42665 df3o3 42666 omcl3g 42686 onsucunitp 42725 oaun3 42734 tr3dom 42881 perfectALTVlem2 46985 |
Copyright terms: Public domain | W3C validator |