| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4580 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4108 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2753 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-pr 4580 |
| This theorem is referenced by: nfsn 4659 disjprsn 4666 tpidm12 4707 tpidm 4710 ifpprsnss 4716 preqsnd 4810 elpreqprlem 4817 opidg 4843 unisng 4876 intsng 4933 vsnex 5373 opeqsng 5446 propeqop 5450 relop 5793 funopg 6516 f1oprswap 6808 fnprb 7144 enpr1g 8948 prfi 9213 supsn 9363 infsn 9397 pr2ne 9899 prdom2 9900 wuntp 10605 wunsn 10610 grusn 10698 prunioo 13384 hashprg 14302 hashfun 14344 hashle2pr 14384 lcmfsn 16546 lubsn 18388 indislem 22885 hmphindis 23682 wilthlem2 26977 negs1s 27938 upgrex 29037 umgrnloop0 29054 edglnl 29088 usgrnloop0ALT 29150 uspgr1v1eop 29194 1loopgruspgr 29446 1egrvtxdg0 29457 umgr2v2eedg 29470 umgr2v2e 29471 ifpsnprss 29568 upgriswlk 29586 clwwlkn1 29985 upgr1wlkdlem1 30089 1to2vfriswmgr 30223 esumpr2 34034 dvh2dim 41424 wopprc 43003 clsk1indlem4 44017 sge0prle 46382 meadjun 46443 elsprel 47459 sclnbgrelself 47832 upgrwlkupwlk 48124 |
| Copyright terms: Public domain | W3C validator |