| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4592 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4120 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2753 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-pr 4592 |
| This theorem is referenced by: nfsn 4671 disjprsn 4678 tpidm12 4719 tpidm 4722 ifpprsnss 4728 preqsnd 4823 elpreqprlem 4830 opidg 4856 unisng 4889 intsng 4947 vsnex 5389 opeqsng 5463 propeqop 5467 relop 5814 funopg 6550 f1oprswap 6844 fnprb 7182 enpr1g 8994 prfi 9274 supsn 9424 infsn 9458 pr2ne 9957 prdom2 9959 wuntp 10664 wunsn 10669 grusn 10757 prunioo 13442 hashprg 14360 hashfun 14402 hashle2pr 14442 lcmfsn 16605 lubsn 18441 indislem 22887 hmphindis 23684 wilthlem2 26979 negs1s 27933 upgrex 29019 umgrnloop0 29036 edglnl 29070 usgrnloop0ALT 29132 uspgr1v1eop 29176 1loopgruspgr 29428 1egrvtxdg0 29439 umgr2v2eedg 29452 umgr2v2e 29453 ifpsnprss 29551 upgriswlk 29569 clwwlkn1 29970 upgr1wlkdlem1 30074 1to2vfriswmgr 30208 esumpr2 34057 dvh2dim 41439 wopprc 43019 clsk1indlem4 44033 sge0prle 46399 meadjun 46460 elsprel 47476 sclnbgrelself 47848 upgrwlkupwlk 48128 |
| Copyright terms: Public domain | W3C validator |