| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4595 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4123 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2754 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-pr 4595 |
| This theorem is referenced by: nfsn 4674 disjprsn 4681 tpidm12 4722 tpidm 4725 ifpprsnss 4731 preqsnd 4826 elpreqprlem 4833 opidg 4859 unisng 4892 intsng 4950 vsnex 5392 opeqsng 5466 propeqop 5470 relop 5817 funopg 6553 f1oprswap 6847 fnprb 7185 enpr1g 8997 prfi 9281 supsn 9431 infsn 9465 pr2ne 9964 prdom2 9966 wuntp 10671 wunsn 10676 grusn 10764 prunioo 13449 hashprg 14367 hashfun 14409 hashle2pr 14449 lcmfsn 16612 lubsn 18448 indislem 22894 hmphindis 23691 wilthlem2 26986 negs1s 27940 upgrex 29026 umgrnloop0 29043 edglnl 29077 usgrnloop0ALT 29139 uspgr1v1eop 29183 1loopgruspgr 29435 1egrvtxdg0 29446 umgr2v2eedg 29459 umgr2v2e 29460 ifpsnprss 29558 upgriswlk 29576 clwwlkn1 29977 upgr1wlkdlem1 30081 1to2vfriswmgr 30215 esumpr2 34064 dvh2dim 41446 wopprc 43026 clsk1indlem4 44040 sge0prle 46406 meadjun 46467 elsprel 47480 sclnbgrelself 47852 upgrwlkupwlk 48132 |
| Copyright terms: Public domain | W3C validator |