Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version |
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
2 | unidm 4082 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtr2i 2767 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-pr 4561 |
This theorem is referenced by: nfsn 4640 disjprsn 4647 tpidm12 4688 tpidm 4691 ifpprsnss 4697 preqsnd 4786 elpreqprlem 4793 opidg 4820 unisng 4857 intsng 4913 snex 5349 opeqsng 5411 propeqop 5415 relop 5748 funopg 6452 f1oprswap 6743 fnprb 7066 enpr1g 8764 supsn 9161 infsn 9194 prdom2 9693 wuntp 10398 wunsn 10403 grusn 10491 prunioo 13142 hashprg 14038 hashfun 14080 hashle2pr 14119 lcmfsn 16268 lubsn 18115 indislem 22058 hmphindis 22856 wilthlem2 26123 upgrex 27365 umgrnloop0 27382 edglnl 27416 usgrnloop0ALT 27475 uspgr1v1eop 27519 1loopgruspgr 27770 1egrvtxdg0 27781 umgr2v2eedg 27794 umgr2v2e 27795 ifpsnprss 27892 upgriswlk 27910 clwwlkn1 28306 upgr1wlkdlem1 28410 1to2vfriswmgr 28544 esumpr2 31935 dvh2dim 39386 wopprc 40768 clsk1indlem4 41543 sge0prle 43829 meadjun 43890 elsprel 44815 upgrwlkupwlk 45190 |
Copyright terms: Public domain | W3C validator |