| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4574 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4102 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2755 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 {csn 4571 {cpr 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-pr 4574 |
| This theorem is referenced by: nfsn 4655 disjprsn 4662 tpidm12 4703 tpidm 4706 ifpprsnss 4712 preqsnd 4806 elpreqprlem 4813 opidg 4839 unisng 4872 intsng 4928 vsnex 5367 opeqsng 5438 propeqop 5442 relop 5785 funopg 6510 f1oprswap 6802 fnprb 7137 enpr1g 8940 prfi 9203 supsn 9352 infsn 9386 pr2ne 9891 prdom2 9892 wuntp 10597 wunsn 10602 grusn 10690 prunioo 13376 hashprg 14297 hashfun 14339 hashle2pr 14379 lcmfsn 16541 lubsn 18383 indislem 22910 hmphindis 23707 wilthlem2 27001 negs1s 27964 upgrex 29065 umgrnloop0 29082 edglnl 29116 usgrnloop0ALT 29178 uspgr1v1eop 29222 1loopgruspgr 29474 1egrvtxdg0 29485 umgr2v2eedg 29498 umgr2v2e 29499 ifpsnprss 29596 upgriswlk 29614 clwwlkn1 30013 upgr1wlkdlem1 30117 1to2vfriswmgr 30251 esumpr2 34072 dvh2dim 41484 wopprc 43063 clsk1indlem4 44077 sge0prle 46439 meadjun 46500 elsprel 47506 sclnbgrelself 47879 upgrwlkupwlk 48171 |
| Copyright terms: Public domain | W3C validator |