| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4604 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4132 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2759 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-pr 4604 |
| This theorem is referenced by: nfsn 4683 disjprsn 4690 tpidm12 4731 tpidm 4734 ifpprsnss 4740 preqsnd 4835 elpreqprlem 4842 opidg 4868 unisng 4901 intsng 4959 vsnex 5404 opeqsng 5478 propeqop 5482 relop 5830 funopg 6570 f1oprswap 6862 fnprb 7200 enpr1g 9037 prfi 9335 supsn 9485 infsn 9519 pr2ne 10018 prdom2 10020 wuntp 10725 wunsn 10730 grusn 10818 prunioo 13498 hashprg 14413 hashfun 14455 hashle2pr 14495 lcmfsn 16654 lubsn 18492 indislem 22938 hmphindis 23735 wilthlem2 27031 negs1s 27985 upgrex 29071 umgrnloop0 29088 edglnl 29122 usgrnloop0ALT 29184 uspgr1v1eop 29228 1loopgruspgr 29480 1egrvtxdg0 29491 umgr2v2eedg 29504 umgr2v2e 29505 ifpsnprss 29603 upgriswlk 29621 clwwlkn1 30022 upgr1wlkdlem1 30126 1to2vfriswmgr 30260 esumpr2 34098 dvh2dim 41464 wopprc 43054 clsk1indlem4 44068 sge0prle 46430 meadjun 46491 elsprel 47489 sclnbgrelself 47861 upgrwlkupwlk 48115 |
| Copyright terms: Public domain | W3C validator |