![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version |
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4651 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
2 | unidm 4180 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtr2i 2769 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-pr 4651 |
This theorem is referenced by: nfsn 4732 disjprsn 4739 tpidm12 4780 tpidm 4783 ifpprsnss 4789 preqsnd 4883 elpreqprlem 4890 opidg 4916 unisng 4949 intsng 5007 vsnex 5449 opeqsng 5522 propeqop 5526 relop 5875 funopg 6612 f1oprswap 6906 fnprb 7245 enpr1g 9085 prfi 9391 supsn 9541 infsn 9574 pr2ne 10073 prdom2 10075 wuntp 10780 wunsn 10785 grusn 10873 prunioo 13541 hashprg 14444 hashfun 14486 hashle2pr 14526 lcmfsn 16682 lubsn 18552 indislem 23028 hmphindis 23826 wilthlem2 27130 negs1s 28077 upgrex 29127 umgrnloop0 29144 edglnl 29178 usgrnloop0ALT 29240 uspgr1v1eop 29284 1loopgruspgr 29536 1egrvtxdg0 29547 umgr2v2eedg 29560 umgr2v2e 29561 ifpsnprss 29659 upgriswlk 29677 clwwlkn1 30073 upgr1wlkdlem1 30177 1to2vfriswmgr 30311 esumpr2 34031 dvh2dim 41402 wopprc 42987 clsk1indlem4 44006 sge0prle 46322 meadjun 46383 elsprel 47349 sclnbgrelself 47720 upgrwlkupwlk 47863 |
Copyright terms: Public domain | W3C validator |