| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4588 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 4116 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2753 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 {csn 4585 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-pr 4588 |
| This theorem is referenced by: nfsn 4667 disjprsn 4674 tpidm12 4715 tpidm 4718 ifpprsnss 4724 preqsnd 4819 elpreqprlem 4826 opidg 4852 unisng 4885 intsng 4943 vsnex 5384 opeqsng 5458 propeqop 5462 relop 5804 funopg 6534 f1oprswap 6826 fnprb 7164 enpr1g 8971 prfi 9250 supsn 9400 infsn 9434 pr2ne 9933 prdom2 9935 wuntp 10640 wunsn 10645 grusn 10733 prunioo 13418 hashprg 14336 hashfun 14378 hashle2pr 14418 lcmfsn 16581 lubsn 18417 indislem 22863 hmphindis 23660 wilthlem2 26955 negs1s 27909 upgrex 28995 umgrnloop0 29012 edglnl 29046 usgrnloop0ALT 29108 uspgr1v1eop 29152 1loopgruspgr 29404 1egrvtxdg0 29415 umgr2v2eedg 29428 umgr2v2e 29429 ifpsnprss 29526 upgriswlk 29544 clwwlkn1 29943 upgr1wlkdlem1 30047 1to2vfriswmgr 30181 esumpr2 34030 dvh2dim 41412 wopprc 42992 clsk1indlem4 44006 sge0prle 46372 meadjun 46433 elsprel 47449 sclnbgrelself 47821 upgrwlkupwlk 48101 |
| Copyright terms: Public domain | W3C validator |