![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclsslem | Structured version Visualization version GIF version |
Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.) |
Ref | Expression |
---|---|
trclsslem | ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsslem 14935 | 1 ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 {cab 2707 ⊆ wss 3947 ∩ cint 4949 ∘ ccom 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-v 3474 df-in 3954 df-ss 3964 df-int 4950 |
This theorem is referenced by: trclfvss 14957 |
Copyright terms: Public domain | W3C validator |