Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trclsslem | Structured version Visualization version GIF version |
Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.) |
Ref | Expression |
---|---|
trclsslem | ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsslem 14794 | 1 ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 {cab 2713 ⊆ wss 3898 ∩ cint 4894 ∘ ccom 5624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-in 3905 df-ss 3915 df-int 4895 |
This theorem is referenced by: trclfvss 14816 |
Copyright terms: Public domain | W3C validator |