MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclsslem Structured version   Visualization version   GIF version

Theorem trclsslem 15029
Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
Assertion
Ref Expression
trclsslem (𝑅𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟

Proof of Theorem trclsslem
StepHypRef Expression
1 clsslem 15023 1 (𝑅𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  {cab 2714  wss 3951   cint 4946  ccom 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-ral 3062  df-ss 3968  df-int 4947
This theorem is referenced by:  trclfvss  15045
  Copyright terms: Public domain W3C validator