![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsslem | Structured version Visualization version GIF version |
Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.) |
Ref | Expression |
---|---|
clsslem | ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3955 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑟 → 𝑅 ⊆ 𝑟)) | |
2 | 1 | anim1d 612 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑟 ∧ 𝜑) → (𝑅 ⊆ 𝑟 ∧ 𝜑))) |
3 | 2 | ss2abdv 4024 | . 2 ⊢ (𝑅 ⊆ 𝑆 → {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)} ⊆ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)}) |
4 | intss 4934 | . 2 ⊢ ({𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)} ⊆ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 {cab 2710 ⊆ wss 3914 ∩ cint 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-v 3449 df-in 3921 df-ss 3931 df-int 4912 |
This theorem is referenced by: trclsslem 14884 |
Copyright terms: Public domain | W3C validator |