MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsslem Structured version   Visualization version   GIF version

Theorem clsslem 14623
Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.)
Assertion
Ref Expression
clsslem (𝑅𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟
Allowed substitution hint:   𝜑(𝑟)

Proof of Theorem clsslem
StepHypRef Expression
1 sstr2 3924 . . . 4 (𝑅𝑆 → (𝑆𝑟𝑅𝑟))
21anim1d 610 . . 3 (𝑅𝑆 → ((𝑆𝑟𝜑) → (𝑅𝑟𝜑)))
32ss2abdv 3993 . 2 (𝑅𝑆 → {𝑟 ∣ (𝑆𝑟𝜑)} ⊆ {𝑟 ∣ (𝑅𝑟𝜑)})
4 intss 4897 . 2 ({𝑟 ∣ (𝑆𝑟𝜑)} ⊆ {𝑟 ∣ (𝑅𝑟𝜑)} → {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
53, 4syl 17 1 (𝑅𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  {cab 2715  wss 3883   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-int 4877
This theorem is referenced by:  trclsslem  14629
  Copyright terms: Public domain W3C validator