MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvss Structured version   Visualization version   GIF version

Theorem trclfvss 14948
Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
Assertion
Ref Expression
trclfvss ((𝑅𝑉𝑆𝑊𝑅𝑆) → (t+‘𝑅) ⊆ (t+‘𝑆))

Proof of Theorem trclfvss
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 trclsslem 14932 . . 3 (𝑅𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
213ad2ant3 1135 . 2 ((𝑅𝑉𝑆𝑊𝑅𝑆) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3 trclfv 14942 . . 3 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
433ad2ant1 1133 . 2 ((𝑅𝑉𝑆𝑊𝑅𝑆) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
5 trclfv 14942 . . 3 (𝑆𝑊 → (t+‘𝑆) = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
653ad2ant2 1134 . 2 ((𝑅𝑉𝑆𝑊𝑅𝑆) → (t+‘𝑆) = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
72, 4, 63sstr4d 3999 1 ((𝑅𝑉𝑆𝑊𝑅𝑆) → (t+‘𝑅) ⊆ (t+‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wss 3911   cint 4906  ccom 5635  cfv 6499  t+ctcl 14927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-trcl 14929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator