MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unundir Structured version   Visualization version   GIF version

Theorem unundir 4101
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem unundir
StepHypRef Expression
1 unidm 4082 . . 3 (𝐶𝐶) = 𝐶
21uneq2i 4090 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐵) ∪ 𝐶)
3 un4 4099 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐶) ∪ (𝐵𝐶))
42, 3eqtr3i 2768 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by:  iocunico  40958
  Copyright terms: Public domain W3C validator