MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un4 Structured version   Visualization version   GIF version

Theorem un4 4125
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))

Proof of Theorem un4
StepHypRef Expression
1 un12 4123 . . 3 (𝐵 ∪ (𝐶𝐷)) = (𝐶 ∪ (𝐵𝐷))
21uneq2i 4115 . 2 (𝐴 ∪ (𝐵 ∪ (𝐶𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
3 unass 4122 . 2 ((𝐴𝐵) ∪ (𝐶𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶𝐷)))
4 unass 4122 . 2 ((𝐴𝐶) ∪ (𝐵𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
52, 3, 43eqtr4i 2764 1 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907
This theorem is referenced by:  unundi  4126  unundir  4127  xpun  5690  resasplit  6693  addsdi  28092  mulsass  28103  ex-pw  30404  iunrelexp0  43734
  Copyright terms: Public domain W3C validator