| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > un4 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| un4 | ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un12 4122 | . . 3 ⊢ (𝐵 ∪ (𝐶 ∪ 𝐷)) = (𝐶 ∪ (𝐵 ∪ 𝐷)) | |
| 2 | 1 | uneq2i 4114 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) |
| 3 | unass 4121 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) | |
| 4 | unass 4121 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) | |
| 5 | 2, 3, 4 | 3eqtr4i 2766 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 |
| This theorem is referenced by: unundi 4125 unundir 4126 xpun 5693 resasplit 6698 addsdi 28095 mulsass 28106 ex-pw 30411 iunrelexp0 43819 |
| Copyright terms: Public domain | W3C validator |