MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un4 Structured version   Visualization version   GIF version

Theorem un4 4198
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))

Proof of Theorem un4
StepHypRef Expression
1 un12 4196 . . 3 (𝐵 ∪ (𝐶𝐷)) = (𝐶 ∪ (𝐵𝐷))
21uneq2i 4188 . 2 (𝐴 ∪ (𝐵 ∪ (𝐶𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
3 unass 4195 . 2 ((𝐴𝐵) ∪ (𝐶𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶𝐷)))
4 unass 4195 . 2 ((𝐴𝐶) ∪ (𝐵𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
52, 3, 43eqtr4i 2778 1 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981
This theorem is referenced by:  unundi  4199  unundir  4200  xpun  5773  resasplit  6791  addsdi  28199  mulsass  28210  ex-pw  30461  iunrelexp0  43664
  Copyright terms: Public domain W3C validator