MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un4 Structured version   Visualization version   GIF version

Theorem un4 4165
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))

Proof of Theorem un4
StepHypRef Expression
1 un12 4163 . . 3 (𝐵 ∪ (𝐶𝐷)) = (𝐶 ∪ (𝐵𝐷))
21uneq2i 4156 . 2 (𝐴 ∪ (𝐵 ∪ (𝐶𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
3 unass 4162 . 2 ((𝐴𝐵) ∪ (𝐶𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶𝐷)))
4 unass 4162 . 2 ((𝐴𝐶) ∪ (𝐵𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵𝐷)))
52, 3, 43eqtr4i 2765 1 ((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cun 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949
This theorem is referenced by:  unundi  4166  unundir  4167  xpun  5745  resasplit  6761  addsdi  28048  mulsass  28059  ex-pw  30232  iunrelexp0  43104
  Copyright terms: Public domain W3C validator