| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > un4 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| un4 | ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un12 4173 | . . 3 ⊢ (𝐵 ∪ (𝐶 ∪ 𝐷)) = (𝐶 ∪ (𝐵 ∪ 𝐷)) | |
| 2 | 1 | uneq2i 4165 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) |
| 3 | unass 4172 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) | |
| 4 | unass 4172 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) | |
| 5 | 2, 3, 4 | 3eqtr4i 2775 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 |
| This theorem is referenced by: unundi 4176 unundir 4177 xpun 5759 resasplit 6778 addsdi 28181 mulsass 28192 ex-pw 30448 iunrelexp0 43715 |
| Copyright terms: Public domain | W3C validator |