![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4165 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 |
This theorem is referenced by: unundi 4185 unundir 4186 uneqin 4294 difabs 4308 undifabs 4483 dfif5 4546 dfsn2 4643 unisng 4929 dfdm2 6302 unixpid 6305 fun2 6771 resasplit 6778 xpider 8826 pm54.43 10038 dmtrclfv 15053 lefld 18649 symg2bas 19424 gsumzaddlem 19953 pwssplit1 21075 plyun0 26250 nodenselem5 27747 addsproplem6 28021 mulsproplem12 28167 mulsproplem13 28168 mulsproplem14 28169 n0scut 28352 1p1e2s 28414 nohalf 28421 halfcut 28430 readdscl 28445 remulscl 28448 wlkp1 29713 cycpmco2f1 33126 carsgsigalem 34296 sseqf 34373 probun 34400 filnetlem3 36362 pibt2 37399 metakunt21 42206 metakunt22 42207 metakunt24 42209 mapfzcons 42703 diophin 42759 pwssplit4 43077 fiuneneq 43180 rclexi 43604 rtrclex 43606 dfrtrcl5 43618 dfrcl2 43663 iunrelexp0 43691 relexpiidm 43693 corclrcl 43696 relexp01min 43702 cotrcltrcl 43714 clsk1indlem3 44032 fiiuncl 45004 fzopredsuc 47272 |
Copyright terms: Public domain | W3C validator |