| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4136 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 |
| This theorem is referenced by: unundi 4156 unundir 4157 uneqin 4269 difabs 4283 undifabs 4458 dfif5 4522 dfsn2 4619 unisng 4905 dfdm2 6281 unixpid 6284 f1imadifssran 6632 fun2 6751 resasplit 6758 xpider 8810 pm54.43 10023 dmtrclfv 15040 lefld 18607 symg2bas 19379 gsumzaddlem 19908 pwssplit1 21027 plyun0 26173 nodenselem5 27670 addsproplem6 27944 mulsproplem12 28090 mulsproplem13 28091 mulsproplem14 28092 n0scut 28275 1p1e2s 28337 nohalf 28344 halfcut 28353 readdscl 28368 remulscl 28371 wlkp1 29628 cycpmco2f1 33088 carsgsigalem 34292 sseqf 34369 probun 34396 filnetlem3 36356 pibt2 37393 metakunt21 42201 metakunt22 42202 metakunt24 42204 mapfzcons 42705 diophin 42761 pwssplit4 43079 fiuneneq 43182 rclexi 43605 rtrclex 43607 dfrtrcl5 43619 dfrcl2 43664 iunrelexp0 43692 relexpiidm 43694 corclrcl 43697 relexp01min 43703 cotrcltrcl 43715 clsk1indlem3 44033 fiiuncl 45042 fzopredsuc 47308 |
| Copyright terms: Public domain | W3C validator |