![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 903 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4179 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: unundi 4199 unundir 4200 uneqin 4308 difabs 4322 undifabs 4501 dfif5 4564 dfsn2 4661 unisng 4949 dfdm2 6312 unixpid 6315 fun2 6784 resasplit 6791 xpider 8846 pm54.43 10070 dmtrclfv 15067 lefld 18662 symg2bas 19434 gsumzaddlem 19963 pwssplit1 21081 plyun0 26256 nodenselem5 27751 addsproplem6 28025 mulsproplem12 28171 mulsproplem13 28172 mulsproplem14 28173 n0scut 28356 1p1e2s 28418 nohalf 28425 halfcut 28434 readdscl 28449 remulscl 28452 wlkp1 29717 cycpmco2f1 33117 carsgsigalem 34280 sseqf 34357 probun 34384 filnetlem3 36346 pibt2 37383 metakunt21 42182 metakunt22 42183 metakunt24 42185 mapfzcons 42672 diophin 42728 pwssplit4 43046 fiuneneq 43153 rclexi 43577 rtrclex 43579 dfrtrcl5 43591 dfrcl2 43636 iunrelexp0 43664 relexpiidm 43666 corclrcl 43669 relexp01min 43675 cotrcltrcl 43687 clsk1indlem3 44005 fiiuncl 44967 fzopredsuc 47238 |
Copyright terms: Public domain | W3C validator |