| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4115 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: unundi 4135 unundir 4136 uneqin 4248 difabs 4262 undifabs 4437 dfif5 4501 dfsn2 4598 unisng 4885 dfdm2 6242 unixpid 6245 f1imadifssran 6586 fun2 6705 resasplit 6712 xpider 8738 pm54.43 9930 dmtrclfv 14960 lefld 18533 symg2bas 19307 gsumzaddlem 19835 pwssplit1 20998 plyun0 26135 nodenselem5 27633 addsproplem6 27921 mulsproplem12 28070 mulsproplem13 28071 mulsproplem14 28072 n0scut 28266 1p1e2s 28343 twocut 28350 halfcut 28381 readdscl 28403 remulscl 28406 wlkp1 29660 cycpmco2f1 33096 carsgsigalem 34299 sseqf 34376 probun 34403 filnetlem3 36361 pibt2 37398 mapfzcons 42697 diophin 42753 pwssplit4 43071 fiuneneq 43174 rclexi 43597 rtrclex 43599 dfrtrcl5 43611 dfrcl2 43656 iunrelexp0 43684 relexpiidm 43686 corclrcl 43689 relexp01min 43695 cotrcltrcl 43707 clsk1indlem3 44025 fiiuncl 45052 fzopredsuc 47317 |
| Copyright terms: Public domain | W3C validator |