Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 902 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4085 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: unundi 4104 unundir 4105 uneqin 4212 difabs 4227 undifabs 4411 dfif5 4475 dfsn2 4574 unisng 4860 dfdm2 6184 unixpid 6187 fun2 6637 resasplit 6644 xpider 8577 pm54.43 9759 dmtrclfv 14729 lefld 18310 symg2bas 19000 gsumzaddlem 19522 pwssplit1 20321 plyun0 25358 wlkp1 28049 cycpmco2f1 31391 carsgsigalem 32282 sseqf 32359 probun 32386 nodenselem5 33891 filnetlem3 34569 pibt2 35588 metakunt21 40145 metakunt22 40146 metakunt24 40148 mapfzcons 40538 diophin 40594 pwssplit4 40914 fiuneneq 41022 rclexi 41223 rtrclex 41225 dfrtrcl5 41237 dfrcl2 41282 iunrelexp0 41310 relexpiidm 41312 corclrcl 41315 relexp01min 41321 cotrcltrcl 41333 clsk1indlem3 41653 fiiuncl 42613 fzopredsuc 44815 |
Copyright terms: Public domain | W3C validator |