| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4107 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 |
| This theorem is referenced by: unundi 4127 unundir 4128 uneqin 4240 difabs 4254 undifabs 4429 dfif5 4493 dfsn2 4590 unisng 4876 dfdm2 6229 unixpid 6232 f1imadifssran 6568 fun2 6687 resasplit 6694 xpider 8715 pm54.43 9897 dmtrclfv 14925 lefld 18498 symg2bas 19272 gsumzaddlem 19800 pwssplit1 20963 plyun0 26100 nodenselem5 27598 addsproplem6 27886 mulsproplem12 28035 mulsproplem13 28036 mulsproplem14 28037 n0scut 28231 1p1e2s 28308 twocut 28315 halfcut 28346 readdscl 28368 remulscl 28371 wlkp1 29625 cycpmco2f1 33066 carsgsigalem 34283 sseqf 34360 probun 34387 filnetlem3 36358 pibt2 37395 mapfzcons 42693 diophin 42749 pwssplit4 43066 fiuneneq 43169 rclexi 43592 rtrclex 43594 dfrtrcl5 43606 dfrcl2 43651 iunrelexp0 43679 relexpiidm 43681 corclrcl 43684 relexp01min 43690 cotrcltrcl 43702 clsk1indlem3 44020 fiiuncl 45047 fzopredsuc 47311 |
| Copyright terms: Public domain | W3C validator |