| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4131 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: unundi 4151 unundir 4152 uneqin 4264 difabs 4278 undifabs 4453 dfif5 4517 dfsn2 4614 unisng 4901 dfdm2 6270 unixpid 6273 f1imadifssran 6622 fun2 6741 resasplit 6748 xpider 8802 pm54.43 10015 dmtrclfv 15037 lefld 18602 symg2bas 19374 gsumzaddlem 19902 pwssplit1 21017 plyun0 26154 nodenselem5 27652 addsproplem6 27933 mulsproplem12 28082 mulsproplem13 28083 mulsproplem14 28084 n0scut 28278 1p1e2s 28354 twocut 28361 halfcut 28385 readdscl 28402 remulscl 28405 wlkp1 29661 cycpmco2f1 33135 carsgsigalem 34347 sseqf 34424 probun 34451 filnetlem3 36398 pibt2 37435 metakunt21 42238 metakunt22 42239 metakunt24 42241 mapfzcons 42739 diophin 42795 pwssplit4 43113 fiuneneq 43216 rclexi 43639 rtrclex 43641 dfrtrcl5 43653 dfrcl2 43698 iunrelexp0 43726 relexpiidm 43728 corclrcl 43731 relexp01min 43737 cotrcltrcl 43749 clsk1indlem3 44067 fiiuncl 45089 fzopredsuc 47352 |
| Copyright terms: Public domain | W3C validator |