| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4119 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 |
| This theorem is referenced by: unundi 4139 unundir 4140 uneqin 4252 difabs 4266 undifabs 4441 dfif5 4505 dfsn2 4602 unisng 4889 dfdm2 6254 unixpid 6257 f1imadifssran 6602 fun2 6723 resasplit 6730 xpider 8761 pm54.43 9954 dmtrclfv 14984 lefld 18551 symg2bas 19323 gsumzaddlem 19851 pwssplit1 20966 plyun0 26102 nodenselem5 27600 addsproplem6 27881 mulsproplem12 28030 mulsproplem13 28031 mulsproplem14 28032 n0scut 28226 1p1e2s 28302 twocut 28309 halfcut 28333 readdscl 28350 remulscl 28353 wlkp1 29609 cycpmco2f1 33081 carsgsigalem 34306 sseqf 34383 probun 34410 filnetlem3 36368 pibt2 37405 mapfzcons 42704 diophin 42760 pwssplit4 43078 fiuneneq 43181 rclexi 43604 rtrclex 43606 dfrtrcl5 43618 dfrcl2 43663 iunrelexp0 43691 relexpiidm 43693 corclrcl 43696 relexp01min 43702 cotrcltrcl 43714 clsk1indlem3 44032 fiiuncl 45059 fzopredsuc 47324 |
| Copyright terms: Public domain | W3C validator |