| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4122 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 |
| This theorem is referenced by: unundi 4142 unundir 4143 uneqin 4255 difabs 4269 undifabs 4444 dfif5 4508 dfsn2 4605 unisng 4892 dfdm2 6257 unixpid 6260 f1imadifssran 6605 fun2 6726 resasplit 6733 xpider 8764 pm54.43 9961 dmtrclfv 14991 lefld 18558 symg2bas 19330 gsumzaddlem 19858 pwssplit1 20973 plyun0 26109 nodenselem5 27607 addsproplem6 27888 mulsproplem12 28037 mulsproplem13 28038 mulsproplem14 28039 n0scut 28233 1p1e2s 28309 twocut 28316 halfcut 28340 readdscl 28357 remulscl 28360 wlkp1 29616 cycpmco2f1 33088 carsgsigalem 34313 sseqf 34390 probun 34417 filnetlem3 36375 pibt2 37412 mapfzcons 42711 diophin 42767 pwssplit4 43085 fiuneneq 43188 rclexi 43611 rtrclex 43613 dfrtrcl5 43625 dfrcl2 43670 iunrelexp0 43698 relexpiidm 43700 corclrcl 43703 relexp01min 43709 cotrcltrcl 43721 clsk1indlem3 44039 fiiuncl 45066 fzopredsuc 47328 |
| Copyright terms: Public domain | W3C validator |