| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4115 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: unundi 4135 unundir 4136 uneqin 4248 difabs 4262 undifabs 4437 dfif5 4501 dfsn2 4598 unisng 4885 dfdm2 6242 unixpid 6245 f1imadifssran 6586 fun2 6705 resasplit 6712 xpider 8738 pm54.43 9930 dmtrclfv 14960 lefld 18527 symg2bas 19299 gsumzaddlem 19827 pwssplit1 20942 plyun0 26078 nodenselem5 27576 addsproplem6 27857 mulsproplem12 28006 mulsproplem13 28007 mulsproplem14 28008 n0scut 28202 1p1e2s 28278 twocut 28285 halfcut 28309 readdscl 28326 remulscl 28329 wlkp1 29583 cycpmco2f1 33054 carsgsigalem 34279 sseqf 34356 probun 34383 filnetlem3 36341 pibt2 37378 mapfzcons 42677 diophin 42733 pwssplit4 43051 fiuneneq 43154 rclexi 43577 rtrclex 43579 dfrtrcl5 43591 dfrcl2 43636 iunrelexp0 43664 relexpiidm 43666 corclrcl 43669 relexp01min 43675 cotrcltrcl 43687 clsk1indlem3 44005 fiiuncl 45032 fzopredsuc 47297 |
| Copyright terms: Public domain | W3C validator |