![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 889 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4018 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 ∪ cun 3829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-v 3419 df-un 3836 |
This theorem is referenced by: unundi 4037 unundir 4038 uneqin 4145 difabs 4158 undifabs 4312 dfif5 4369 dfsn2 4457 unisng 4732 dfdm2 5975 unixpid 5978 fun2 6375 resasplit 6382 xpider 8174 pm54.43 9229 dmtrclfv 14245 lefld 17706 symg2bas 18299 gsumzaddlem 18806 pwssplit1 19565 plyun0 24505 wlkp1 27184 carsgsigalem 31250 sseqf 31328 probun 31355 nodenselem5 32753 filnetlem3 33289 pibt2 34179 mapfzcons 38749 diophin 38806 pwssplit4 39126 fiuneneq 39234 rclexi 39379 rtrclex 39381 dfrtrcl5 39393 dfrcl2 39423 iunrelexp0 39451 relexpiidm 39453 corclrcl 39456 relexp01min 39462 cotrcltrcl 39474 clsk1indlem3 39797 fiiuncl 40786 fzopredsuc 42964 |
Copyright terms: Public domain | W3C validator |