| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 904 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 4103 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: unundi 4123 unundir 4124 uneqin 4236 difabs 4250 undifabs 4425 dfif5 4489 dfsn2 4586 unisng 4874 dfdm2 6228 unixpid 6231 f1imadifssran 6567 fun2 6686 resasplit 6693 xpider 8712 pm54.43 9894 dmtrclfv 14925 lefld 18498 symg2bas 19305 gsumzaddlem 19833 pwssplit1 20993 plyun0 26129 nodenselem5 27627 addsproplem6 27917 mulsproplem12 28066 mulsproplem13 28067 mulsproplem14 28068 n0scut 28262 1p1e2s 28339 twocut 28346 halfcut 28378 pw2cut2 28382 readdscl 28401 remulscl 28404 wlkp1 29658 cycpmco2f1 33093 carsgsigalem 34328 sseqf 34405 probun 34432 filnetlem3 36424 pibt2 37461 mapfzcons 42819 diophin 42875 pwssplit4 43192 fiuneneq 43295 rclexi 43718 rtrclex 43720 dfrtrcl5 43732 dfrcl2 43777 iunrelexp0 43805 relexpiidm 43807 corclrcl 43810 relexp01min 43816 cotrcltrcl 43828 clsk1indlem3 44146 fiiuncl 45172 fzopredsuc 47433 |
| Copyright terms: Public domain | W3C validator |