Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 902 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4096 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∪ cun 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 |
This theorem is referenced by: unundi 4115 unundir 4116 uneqin 4223 difabs 4238 undifabs 4422 dfif5 4487 dfsn2 4584 unisng 4871 dfdm2 6206 unixpid 6209 fun2 6674 resasplit 6681 xpider 8625 pm54.43 9830 dmtrclfv 14801 lefld 18380 symg2bas 19069 gsumzaddlem 19590 pwssplit1 20393 plyun0 25430 wlkp1 28158 cycpmco2f1 31499 carsgsigalem 32388 sseqf 32465 probun 32492 nodenselem5 33949 filnetlem3 34627 pibt2 35644 metakunt21 40353 metakunt22 40354 metakunt24 40356 mapfzcons 40741 diophin 40797 pwssplit4 41118 fiuneneq 41226 rclexi 41444 rtrclex 41446 dfrtrcl5 41458 dfrcl2 41503 iunrelexp0 41531 relexpiidm 41533 corclrcl 41536 relexp01min 41542 cotrcltrcl 41554 clsk1indlem3 41874 fiiuncl 42834 fzopredsuc 45067 |
Copyright terms: Public domain | W3C validator |