Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unidm | Structured version Visualization version GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 901 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 4081 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: unundi 4100 unundir 4101 uneqin 4209 difabs 4224 undifabs 4408 dfif5 4472 dfsn2 4571 unisng 4857 dfdm2 6173 unixpid 6176 fun2 6621 resasplit 6628 xpider 8535 pm54.43 9690 dmtrclfv 14657 lefld 18225 symg2bas 18915 gsumzaddlem 19437 pwssplit1 20236 plyun0 25263 wlkp1 27951 cycpmco2f1 31293 carsgsigalem 32182 sseqf 32259 probun 32286 nodenselem5 33818 filnetlem3 34496 pibt2 35515 metakunt21 40073 metakunt22 40074 metakunt24 40076 mapfzcons 40454 diophin 40510 pwssplit4 40830 fiuneneq 40938 rclexi 41112 rtrclex 41114 dfrtrcl5 41126 dfrcl2 41171 iunrelexp0 41199 relexpiidm 41201 corclrcl 41204 relexp01min 41210 cotrcltrcl 41222 clsk1indlem3 41542 fiiuncl 42502 fzopredsuc 44703 |
Copyright terms: Public domain | W3C validator |