| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unundi | Structured version Visualization version GIF version | ||
| Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| unundi | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 4132 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 2 | 1 | uneq1i 4139 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| 3 | un4 4150 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2760 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: dfif5 4517 |
| Copyright terms: Public domain | W3C validator |