Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unundi Structured version   Visualization version   GIF version

Theorem unundi 4000
 Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3982 . . 3 (𝐴𝐴) = 𝐴
21uneq1i 3989 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = (𝐴 ∪ (𝐵𝐶))
3 un4 3999 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
42, 3eqtr3i 2850 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1658   ∪ cun 3795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2802 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-v 3415  df-un 3802 This theorem is referenced by:  dfif5  4321
 Copyright terms: Public domain W3C validator