| Mathbox for Jon Pennant |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocunico | Structured version Visualization version GIF version | ||
| Description: Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.) |
| Ref | Expression |
|---|---|
| iocunico | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un23 4123 | . . 3 ⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵}) | |
| 2 | unundir 4126 | . . 3 ⊢ (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵}) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵})) | |
| 3 | uncom 4107 | . . . 4 ⊢ ((𝐵(,)𝐶) ∪ {𝐵}) = ({𝐵} ∪ (𝐵(,)𝐶)) | |
| 4 | 3 | uneq2i 4114 | . . 3 ⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵})) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) |
| 5 | 1, 2, 4 | 3eqtrri 2761 | . 2 ⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) |
| 6 | simpl1 1192 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ∈ ℝ*) | |
| 7 | simpl2 1193 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ*) | |
| 8 | simprl 770 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 < 𝐵) | |
| 9 | ioounsn 13379 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| 11 | simpl3 1194 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐶 ∈ ℝ*) | |
| 12 | simprr 772 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 < 𝐶) | |
| 13 | snunioo 13380 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) | |
| 14 | 7, 11, 12, 13 | syl3anc 1373 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) |
| 15 | 10, 14 | uneq12d 4118 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶))) |
| 16 | ioojoin 13385 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶)) | |
| 17 | 5, 15, 16 | 3eqtr3a 2792 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 {csn 4575 class class class wbr 5093 (class class class)co 7352 ℝ*cxr 11152 < clt 11153 (,)cioo 13247 (,]cioc 13248 [,)cico 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |