Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocunico Structured version   Visualization version   GIF version

Theorem iocunico 42688
Description: Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.)
Assertion
Ref Expression
iocunico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))

Proof of Theorem iocunico
StepHypRef Expression
1 un23 4170 . . 3 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵})
2 unundir 4173 . . 3 (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵}) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵}))
3 uncom 4154 . . . 4 ((𝐵(,)𝐶) ∪ {𝐵}) = ({𝐵} ∪ (𝐵(,)𝐶))
43uneq2i 4161 . . 3 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵})) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶)))
51, 2, 43eqtrri 2761 . 2 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
6 simpl1 1188 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ*)
7 simpl2 1189 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
8 simprl 769 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
9 ioounsn 13496 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
106, 7, 8, 9syl3anc 1368 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
11 simpl3 1190 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ*)
12 simprr 771 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
13 snunioo 13497 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶))
147, 11, 12, 13syl3anc 1368 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶))
1510, 14uneq12d 4165 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)))
16 ioojoin 13502 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
175, 15, 163eqtr3a 2792 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cun 3947  {csn 4632   class class class wbr 5152  (class class class)co 7426  *cxr 11287   < clt 11288  (,)cioo 13366  (,]cioc 13367  [,)cico 13368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-pre-lttri 11222  ax-pre-lttrn 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-ioo 13370  df-ioc 13371  df-ico 13372  df-icc 13373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator