Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocunico Structured version   Visualization version   GIF version

Theorem iocunico 41960
Description: Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.)
Assertion
Ref Expression
iocunico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))

Proof of Theorem iocunico
StepHypRef Expression
1 un23 4169 . . 3 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵})
2 unundir 4172 . . 3 (((𝐴(,)𝐵) ∪ (𝐵(,)𝐶)) ∪ {𝐵}) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵}))
3 uncom 4154 . . . 4 ((𝐵(,)𝐶) ∪ {𝐵}) = ({𝐵} ∪ (𝐵(,)𝐶))
43uneq2i 4161 . . 3 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ((𝐵(,)𝐶) ∪ {𝐵})) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶)))
51, 2, 43eqtrri 2766 . 2 (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
6 simpl1 1192 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ*)
7 simpl2 1193 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
8 simprl 770 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
9 ioounsn 13454 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
106, 7, 8, 9syl3anc 1372 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
11 simpl3 1194 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ*)
12 simprr 772 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
13 snunioo 13455 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶))
147, 11, 12, 13syl3anc 1372 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶))
1510, 14uneq12d 4165 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)))
16 ioojoin 13460 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
175, 15, 163eqtr3a 2797 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cun 3947  {csn 4629   class class class wbr 5149  (class class class)co 7409  *cxr 11247   < clt 11248  (,)cioo 13324  (,]cioc 13325  [,)cico 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator