MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnep Structured version   Visualization version   GIF version

Theorem rnep 5867
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.)
Assertion
Ref Expression
rnep ran E = (V ∖ {∅})

Proof of Theorem rnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 5828 . 2 ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
2 nfab1 2896 . . 3 𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
3 nfcv 2894 . . 3 𝑥(V ∖ {∅})
4 abid 2713 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥)
5 epel 5519 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
65exbii 1849 . . . . 5 (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦𝑥)
7 neq0 4302 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
87bicomi 224 . . . . 5 (∃𝑦 𝑦𝑥 ↔ ¬ 𝑥 = ∅)
9 velsn 4592 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
109bicomi 224 . . . . . 6 (𝑥 = ∅ ↔ 𝑥 ∈ {∅})
1110notbii 320 . . . . 5 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅})
126, 8, 113bitri 297 . . . 4 (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅})
13 velcomp 3917 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅})
1413bicomi 224 . . . 4 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅}))
154, 12, 143bitri 297 . . 3 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅}))
162, 3, 15eqri 3955 . 2 {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅})
171, 16eqtri 2754 1 ran E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  cdif 3899  c0 4283  {csn 4576   class class class wbr 5091   E cep 5515  ran crn 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-eprel 5516  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator