MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnep Structured version   Visualization version   GIF version

Theorem rnep 5761
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.)
Assertion
Ref Expression
rnep ran E = (V ∖ {∅})

Proof of Theorem rnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 5723 . 2 ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
2 nfab1 2957 . . 3 𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
3 nfcv 2955 . . 3 𝑥(V ∖ {∅})
4 abid 2780 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥)
5 epel 5433 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
65exbii 1849 . . . . 5 (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦𝑥)
7 neq0 4259 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
87bicomi 227 . . . . 5 (∃𝑦 𝑦𝑥 ↔ ¬ 𝑥 = ∅)
9 velsn 4541 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
109bicomi 227 . . . . . 6 (𝑥 = ∅ ↔ 𝑥 ∈ {∅})
1110notbii 323 . . . . 5 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅})
126, 8, 113bitri 300 . . . 4 (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅})
13 velcomp 3896 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅})
1413bicomi 227 . . . 4 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅}))
154, 12, 143bitri 300 . . 3 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅}))
162, 3, 15eqri 3935 . 2 {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅})
171, 16eqtri 2821 1 ran E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wex 1781  wcel 2111  {cab 2776  Vcvv 3441  cdif 3878  c0 4243  {csn 4525   class class class wbr 5030   E cep 5429  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-eprel 5430  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator