| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnep | Structured version Visualization version GIF version | ||
| Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| rnep | ⊢ ran E = (V ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 5868 | . 2 ⊢ ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
| 2 | nfab1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
| 3 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑥(V ∖ {∅}) | |
| 4 | abid 2717 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥) | |
| 5 | epel 5556 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
| 7 | neq0 4327 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
| 8 | 7 | bicomi 224 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑥 ↔ ¬ 𝑥 = ∅) |
| 9 | velsn 4617 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 10 | 9 | bicomi 224 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ 𝑥 ∈ {∅}) |
| 11 | 10 | notbii 320 | . . . . 5 ⊢ (¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅}) |
| 12 | 6, 8, 11 | 3bitri 297 | . . . 4 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅}) |
| 13 | velcomp 3941 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅}) | |
| 14 | 13 | bicomi 224 | . . . 4 ⊢ (¬ 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅})) |
| 15 | 4, 12, 14 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅})) |
| 16 | 2, 3, 15 | eqri 3979 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅}) |
| 17 | 1, 16 | eqtri 2758 | 1 ⊢ ran E = (V ∖ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 {csn 4601 class class class wbr 5119 E cep 5552 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |