![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnep | Structured version Visualization version GIF version |
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
rnep | ⊢ ran E = (V ∖ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5901 | . 2 ⊢ ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
2 | nfab1 2904 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
3 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑥(V ∖ {∅}) | |
4 | abid 2715 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥) | |
5 | epel 5591 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
6 | 5 | exbii 1844 | . . . . 5 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
7 | neq0 4357 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
8 | 7 | bicomi 224 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑥 ↔ ¬ 𝑥 = ∅) |
9 | velsn 4646 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
10 | 9 | bicomi 224 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ 𝑥 ∈ {∅}) |
11 | 10 | notbii 320 | . . . . 5 ⊢ (¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅}) |
12 | 6, 8, 11 | 3bitri 297 | . . . 4 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅}) |
13 | velcomp 3977 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅}) | |
14 | 13 | bicomi 224 | . . . 4 ⊢ (¬ 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅})) |
15 | 4, 12, 14 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅})) |
16 | 2, 3, 15 | eqri 4015 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅}) |
17 | 1, 16 | eqtri 2762 | 1 ⊢ ran E = (V ∖ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1536 ∃wex 1775 ∈ wcel 2105 {cab 2711 Vcvv 3477 ∖ cdif 3959 ∅c0 4338 {csn 4630 class class class wbr 5147 E cep 5587 ran crn 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-eprel 5588 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |