![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnep | Structured version Visualization version GIF version |
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
rnep | ⊢ ran E = (V ∖ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5886 | . 2 ⊢ ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
2 | nfab1 2901 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥} | |
3 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥(V ∖ {∅}) | |
4 | abid 2709 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥) | |
5 | epel 5580 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
6 | 5 | exbii 1843 | . . . . 5 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
7 | neq0 4342 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
8 | 7 | bicomi 223 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑥 ↔ ¬ 𝑥 = ∅) |
9 | velsn 4641 | . . . . . . 7 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
10 | 9 | bicomi 223 | . . . . . 6 ⊢ (𝑥 = ∅ ↔ 𝑥 ∈ {∅}) |
11 | 10 | notbii 320 | . . . . 5 ⊢ (¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅}) |
12 | 6, 8, 11 | 3bitri 297 | . . . 4 ⊢ (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅}) |
13 | velcomp 3960 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅}) | |
14 | 13 | bicomi 223 | . . . 4 ⊢ (¬ 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅})) |
15 | 4, 12, 14 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅})) |
16 | 2, 3, 15 | eqri 3999 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅}) |
17 | 1, 16 | eqtri 2756 | 1 ⊢ ran E = (V ∖ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2705 Vcvv 3470 ∖ cdif 3942 ∅c0 4319 {csn 4625 class class class wbr 5143 E cep 5576 ran crn 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-eprel 5577 df-cnv 5681 df-dm 5683 df-rn 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |