MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnep Structured version   Visualization version   GIF version

Theorem rnep 5893
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.)
Assertion
Ref Expression
rnep ran E = (V ∖ {∅})

Proof of Theorem rnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 5855 . 2 ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
2 nfab1 2894 . . 3 𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
3 nfcv 2892 . . 3 𝑥(V ∖ {∅})
4 abid 2712 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥)
5 epel 5544 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
65exbii 1848 . . . . 5 (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦𝑥)
7 neq0 4318 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
87bicomi 224 . . . . 5 (∃𝑦 𝑦𝑥 ↔ ¬ 𝑥 = ∅)
9 velsn 4608 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
109bicomi 224 . . . . . 6 (𝑥 = ∅ ↔ 𝑥 ∈ {∅})
1110notbii 320 . . . . 5 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅})
126, 8, 113bitri 297 . . . 4 (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅})
13 velcomp 3932 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅})
1413bicomi 224 . . . 4 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅}))
154, 12, 143bitri 297 . . 3 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅}))
162, 3, 15eqri 3970 . 2 {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅})
171, 16eqtri 2753 1 ran E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  cdif 3914  c0 4299  {csn 4592   class class class wbr 5110   E cep 5540  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator