MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnep Structured version   Visualization version   GIF version

Theorem rnep 5939
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.)
Assertion
Ref Expression
rnep ran E = (V ∖ {∅})

Proof of Theorem rnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 5901 . 2 ran E = {𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
2 nfab1 2904 . . 3 𝑥{𝑥 ∣ ∃𝑦 𝑦 E 𝑥}
3 nfcv 2902 . . 3 𝑥(V ∖ {∅})
4 abid 2715 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ ∃𝑦 𝑦 E 𝑥)
5 epel 5591 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
65exbii 1844 . . . . 5 (∃𝑦 𝑦 E 𝑥 ↔ ∃𝑦 𝑦𝑥)
7 neq0 4357 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
87bicomi 224 . . . . 5 (∃𝑦 𝑦𝑥 ↔ ¬ 𝑥 = ∅)
9 velsn 4646 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
109bicomi 224 . . . . . 6 (𝑥 = ∅ ↔ 𝑥 ∈ {∅})
1110notbii 320 . . . . 5 𝑥 = ∅ ↔ ¬ 𝑥 ∈ {∅})
126, 8, 113bitri 297 . . . 4 (∃𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ {∅})
13 velcomp 3977 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ ¬ 𝑥 ∈ {∅})
1413bicomi 224 . . . 4 𝑥 ∈ {∅} ↔ 𝑥 ∈ (V ∖ {∅}))
154, 12, 143bitri 297 . . 3 (𝑥 ∈ {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} ↔ 𝑥 ∈ (V ∖ {∅}))
162, 3, 15eqri 4015 . 2 {𝑥 ∣ ∃𝑦 𝑦 E 𝑥} = (V ∖ {∅})
171, 16eqtri 2762 1 ran E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wex 1775  wcel 2105  {cab 2711  Vcvv 3477  cdif 3959  c0 4338  {csn 4630   class class class wbr 5147   E cep 5587  ran crn 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-eprel 5588  df-cnv 5696  df-dm 5698  df-rn 5699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator