![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elneeldif | Structured version Visualization version GIF version |
Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
elneeldif | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3958 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ 𝐴) ↔ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴)) | |
2 | nelne2 3039 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑌 ∈ 𝐴 → 𝑋 ≠ 𝑌)) |
4 | 3 | adantld 490 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌)) |
5 | 1, 4 | biimtrid 241 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑌 ∈ (𝐵 ∖ 𝐴) → 𝑋 ≠ 𝑌)) |
6 | 5 | imp 406 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2939 ∖ cdif 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 |
This theorem is referenced by: frlmsslsp 21571 fmlasucdisj 34689 mhpind 41469 |
Copyright terms: Public domain | W3C validator |