| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elneeldif | Structured version Visualization version GIF version | ||
| Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| elneeldif | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ 𝐴) ↔ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴)) | |
| 2 | nelne2 3040 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑌 ∈ 𝐴 → 𝑋 ≠ 𝑌)) |
| 4 | 3 | adantld 490 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌)) |
| 5 | 1, 4 | biimtrid 242 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑌 ∈ (𝐵 ∖ 𝐴) → 𝑋 ≠ 𝑌)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-dif 3954 |
| This theorem is referenced by: frlmsslsp 21816 fmlasucdisj 35404 mhpind 42604 |
| Copyright terms: Public domain | W3C validator |