![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elneeldif | Structured version Visualization version GIF version |
Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
elneeldif | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3925 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ 𝐴) ↔ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴)) | |
2 | nelne2 3043 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) | |
3 | 2 | ex 414 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑌 ∈ 𝐴 → 𝑋 ≠ 𝑌)) |
4 | 3 | adantld 492 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌)) |
5 | 1, 4 | biimtrid 241 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑌 ∈ (𝐵 ∖ 𝐴) → 𝑋 ≠ 𝑌)) |
6 | 5 | imp 408 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ≠ wne 2944 ∖ cdif 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-v 3450 df-dif 3918 |
This theorem is referenced by: frlmsslsp 21218 fmlasucdisj 34033 mhpind 40798 |
Copyright terms: Public domain | W3C validator |