MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneeldif Structured version   Visualization version   GIF version

Theorem elneeldif 3929
Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
elneeldif ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑋𝑌)

Proof of Theorem elneeldif
StepHypRef Expression
1 eldif 3925 . . 3 (𝑌 ∈ (𝐵𝐴) ↔ (𝑌𝐵 ∧ ¬ 𝑌𝐴))
2 nelne2 3043 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝑌𝐴) → 𝑋𝑌)
32ex 414 . . . 4 (𝑋𝐴 → (¬ 𝑌𝐴𝑋𝑌))
43adantld 492 . . 3 (𝑋𝐴 → ((𝑌𝐵 ∧ ¬ 𝑌𝐴) → 𝑋𝑌))
51, 4biimtrid 241 . 2 (𝑋𝐴 → (𝑌 ∈ (𝐵𝐴) → 𝑋𝑌))
65imp 408 1 ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2107  wne 2944  cdif 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-v 3450  df-dif 3918
This theorem is referenced by:  frlmsslsp  21218  fmlasucdisj  34033  mhpind  40798
  Copyright terms: Public domain W3C validator