Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elneeldif | Structured version Visualization version GIF version |
Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
elneeldif | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3893 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ 𝐴) ↔ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴)) | |
2 | nelne2 3041 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑌 ∈ 𝐴 → 𝑋 ≠ 𝑌)) |
4 | 3 | adantld 490 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌)) |
5 | 1, 4 | syl5bi 241 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑌 ∈ (𝐵 ∖ 𝐴) → 𝑋 ≠ 𝑌)) |
6 | 5 | imp 406 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 |
This theorem is referenced by: frlmsslsp 20913 fmlasucdisj 33261 mhpind 40206 |
Copyright terms: Public domain | W3C validator |