MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneeldif Structured version   Visualization version   GIF version

Theorem elneeldif 3990
Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
elneeldif ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑋𝑌)

Proof of Theorem elneeldif
StepHypRef Expression
1 eldif 3986 . . 3 (𝑌 ∈ (𝐵𝐴) ↔ (𝑌𝐵 ∧ ¬ 𝑌𝐴))
2 nelne2 3046 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝑌𝐴) → 𝑋𝑌)
32ex 412 . . . 4 (𝑋𝐴 → (¬ 𝑌𝐴𝑋𝑌))
43adantld 490 . . 3 (𝑋𝐴 → ((𝑌𝐵 ∧ ¬ 𝑌𝐴) → 𝑋𝑌))
51, 4biimtrid 242 . 2 (𝑋𝐴 → (𝑌 ∈ (𝐵𝐴) → 𝑋𝑌))
65imp 406 1 ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wne 2946  cdif 3973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979
This theorem is referenced by:  frlmsslsp  21839  fmlasucdisj  35367  mhpind  42549
  Copyright terms: Public domain W3C validator