MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vnex Structured version   Visualization version   GIF version

Theorem vnex 5305
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem vnex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nalset 5304 . 2 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 3470 . . . . . 6 𝑦 ∈ V
32tbt 369 . . . . 5 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1813 . . . 4 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2717 . . . 4 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 278 . . 3 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1842 . 2 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 322 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1531   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468
This theorem is referenced by:  vprc  5306
  Copyright terms: Public domain W3C validator