|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vnex | Structured version Visualization version GIF version | ||
| Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| vnex | ⊢ ¬ ∃𝑥 𝑥 = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nalset 5313 | . 2 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
| 2 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | tbt 369 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | 
| 4 | 3 | albii 1819 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | 
| 5 | dfcleq 2730 | . . . 4 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
| 6 | 4, 5 | bitr4i 278 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) | 
| 7 | 6 | exbii 1848 | . 2 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) | 
| 8 | 1, 7 | mtbi 322 | 1 ⊢ ¬ ∃𝑥 𝑥 = V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 | 
| This theorem is referenced by: vprc 5315 | 
| Copyright terms: Public domain | W3C validator |