MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vnex Structured version   Visualization version   GIF version

Theorem vnex 5247
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem vnex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nalset 5246 . 2 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 3440 . . . . . 6 𝑦 ∈ V
32tbt 369 . . . . 5 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1820 . . . 4 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2724 . . . 4 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 278 . . 3 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1849 . 2 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 322 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438
This theorem is referenced by:  vprc  5248
  Copyright terms: Public domain W3C validator