| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vnex 5256 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
| 2 | isset 3451 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 |
| This theorem is referenced by: nvel 5258 intex 5286 intnex 5287 abnex 7699 iprc 7850 opabn1stprc 7999 elfi2 9309 fi0 9315 ruALT 9503 cardmin2 9903 00lsp 20923 n0lplig 30484 fveqvfvv 47202 ndmaovcl 47365 vsn 48973 posnex 49141 prsnex 49142 |
| Copyright terms: Public domain | W3C validator |