Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 5233 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 3435 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 322 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: nvel 5235 intex 5256 intnex 5257 abnex 7585 iprc 7734 opabn1stprc 7871 elfi2 9103 fi0 9109 ruALT 9292 cardmin2 9688 00lsp 20158 n0lplig 28746 fveqvfvv 44421 ndmaovcl 44582 vsn 46045 |
Copyright terms: Public domain | W3C validator |