![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 5332 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 3502 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: nvel 5334 intex 5362 intnex 5363 abnex 7792 iprc 7951 opabn1stprc 8099 elfi2 9483 fi0 9489 ruALT 9672 cardmin2 10068 00lsp 21002 n0lplig 30515 fveqvfvv 46955 ndmaovcl 47118 vsn 48543 |
Copyright terms: Public domain | W3C validator |