MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 5257
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 5256 . 2 ¬ ∃𝑥 𝑥 = V
2 isset 3452 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbir 323 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440
This theorem is referenced by:  nvel  5258  intex  5286  intnex  5287  abnex  7697  iprc  7851  opabn1stprc  8000  elfi2  9323  fi0  9329  ruALT  9517  cardmin2  9914  00lsp  20903  n0lplig  30446  fveqvfvv  47044  ndmaovcl  47207  vsn  48816  posnex  48984  prsnex  48985
  Copyright terms: Public domain W3C validator