![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 5319 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 3491 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 |
This theorem is referenced by: nvel 5321 intex 5349 intnex 5350 abnex 7775 iprc 7933 opabn1stprc 8081 elfi2 9451 fi0 9457 ruALT 9640 cardmin2 10036 00lsp 20996 n0lplig 30511 fveqvfvv 46989 ndmaovcl 47152 vsn 48659 |
Copyright terms: Public domain | W3C validator |