| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vnex 5264 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
| 2 | isset 3458 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 |
| This theorem is referenced by: nvel 5266 intex 5294 intnex 5295 abnex 7713 iprc 7867 opabn1stprc 8016 elfi2 9341 fi0 9347 ruALT 9532 cardmin2 9928 00lsp 20863 n0lplig 30385 fveqvfvv 47014 ndmaovcl 47177 vsn 48773 posnex 48941 prsnex 48942 |
| Copyright terms: Public domain | W3C validator |