MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 5265
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 5264 . 2 ¬ ∃𝑥 𝑥 = V
2 isset 3458 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbir 323 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446
This theorem is referenced by:  nvel  5266  intex  5294  intnex  5295  abnex  7713  iprc  7867  opabn1stprc  8016  elfi2  9341  fi0  9347  ruALT  9532  cardmin2  9928  00lsp  20863  n0lplig  30385  fveqvfvv  47014  ndmaovcl  47177  vsn  48773  posnex  48941  prsnex  48942
  Copyright terms: Public domain W3C validator