| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vnex 5272 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
| 2 | isset 3464 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: nvel 5274 intex 5302 intnex 5303 abnex 7736 iprc 7890 opabn1stprc 8040 elfi2 9372 fi0 9378 ruALT 9563 cardmin2 9959 00lsp 20894 n0lplig 30419 fveqvfvv 47045 ndmaovcl 47208 vsn 48804 posnex 48972 prsnex 48973 |
| Copyright terms: Public domain | W3C validator |