MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 5256
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 5255 . 2 ¬ ∃𝑥 𝑥 = V
2 isset 3454 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbir 322 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1780  wcel 2105  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443
This theorem is referenced by:  nvel  5257  intex  5278  intnex  5279  abnex  7661  iprc  7820  opabn1stprc  7958  elfi2  9263  fi0  9269  ruALT  9452  cardmin2  9848  00lsp  20341  n0lplig  29074  fveqvfvv  44874  ndmaovcl  45035  vsn  46497
  Copyright terms: Public domain W3C validator