| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vnex 5256 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
| 2 | isset 3452 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 |
| This theorem is referenced by: nvel 5258 intex 5286 intnex 5287 abnex 7697 iprc 7851 opabn1stprc 8000 elfi2 9323 fi0 9329 ruALT 9517 cardmin2 9914 00lsp 20903 n0lplig 30446 fveqvfvv 47044 ndmaovcl 47207 vsn 48816 posnex 48984 prsnex 48985 |
| Copyright terms: Public domain | W3C validator |