MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 5234
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 5233 . 2 ¬ ∃𝑥 𝑥 = V
2 isset 3435 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbir 322 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by:  nvel  5235  intex  5256  intnex  5257  abnex  7585  iprc  7734  opabn1stprc  7871  elfi2  9103  fi0  9109  ruALT  9292  cardmin2  9688  00lsp  20158  n0lplig  28746  fveqvfvv  44421  ndmaovcl  44582  vsn  46045
  Copyright terms: Public domain W3C validator