Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 5255 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 3454 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 322 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 |
This theorem is referenced by: nvel 5257 intex 5278 intnex 5279 abnex 7661 iprc 7820 opabn1stprc 7958 elfi2 9263 fi0 9269 ruALT 9452 cardmin2 9848 00lsp 20341 n0lplig 29074 fveqvfvv 44874 ndmaovcl 45035 vsn 46497 |
Copyright terms: Public domain | W3C validator |