| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vnex 5284 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
| 2 | isset 3473 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbir 323 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: nvel 5286 intex 5314 intnex 5315 abnex 7749 iprc 7905 opabn1stprc 8055 elfi2 9424 fi0 9430 ruALT 9615 cardmin2 10011 00lsp 20936 n0lplig 30410 fveqvfvv 47017 ndmaovcl 47180 vsn 48738 posnex 48902 prsnex 48903 |
| Copyright terms: Public domain | W3C validator |