| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclef | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtoclef.1 | ⊢ Ⅎ𝑥𝜑 |
| vtoclef.2 | ⊢ 𝐴 ∈ V |
| vtoclef.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclef | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclef.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3454 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | vtoclef.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | vtoclef.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 5 | 3, 4 | exlimi 2220 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
| 6 | 2, 5 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 |
| This theorem is referenced by: vtoclf 3517 nn0ind-raph 12573 rdgssun 37422 finxpreclem2 37434 |
| Copyright terms: Public domain | W3C validator |