Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclef | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
vtoclef.1 | ⊢ Ⅎ𝑥𝜑 |
vtoclef.2 | ⊢ 𝐴 ∈ V |
vtoclef.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtoclef | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclef.2 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 3447 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | vtoclef.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | vtoclef.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
5 | 3, 4 | exlimi 2210 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-clel 2816 |
This theorem is referenced by: nn0ind-raph 12420 rdgssun 35549 finxpreclem2 35561 |
Copyright terms: Public domain | W3C validator |