Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl2d | Structured version Visualization version GIF version |
Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) (Revised by BTernaryTau, 19-Oct-2023.) |
Ref | Expression |
---|---|
vtocl2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocl2d.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
vtocl2d.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
vtocl2d.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
vtocl2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl2d.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | vtocl2d.3 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝜓) |
4 | vtocl2d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | vtocl2d.1 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) | |
6 | 5 | adantll 710 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
7 | 6 | pm5.74da 800 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑦 = 𝐵 → 𝜓) ↔ (𝑦 = 𝐵 → 𝜒))) |
8 | 2 | a1d 25 | . . . . 5 ⊢ (𝜑 → (𝑦 = 𝐵 → 𝜓)) |
9 | 4, 7, 8 | vtocld 3484 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝐵 → 𝜒)) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝜒) |
11 | 3, 10 | 2thd 264 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
12 | 1, 11, 2 | vtocld 3484 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: submateq 31661 cplgredgex 32982 acycgrcycl 33009 |
Copyright terms: Public domain | W3C validator |