| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2d | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) (Revised by BTernaryTau, 19-Oct-2023.) |
| Ref | Expression |
|---|---|
| vtocl2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocl2d.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| vtocl2d.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| vtocl2d.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| vtocl2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2d.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | vtocl2d.3 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝜓) |
| 4 | vtocl2d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | vtocl2d.1 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 7 | 6 | pm5.74da 803 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑦 = 𝐵 → 𝜓) ↔ (𝑦 = 𝐵 → 𝜒))) |
| 8 | 2 | a1d 25 | . . . . 5 ⊢ (𝜑 → (𝑦 = 𝐵 → 𝜓)) |
| 9 | 4, 7, 8 | vtocld 3545 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝐵 → 𝜒)) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝜒) |
| 11 | 3, 10 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 12 | 1, 11, 2 | vtocld 3545 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: fpwwe2lem4 10653 pwfseqlem4 10681 submateq 33845 cplgredgex 35148 acycgrcycl 35174 |
| Copyright terms: Public domain | W3C validator |