Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgssun Structured version   Visualization version   GIF version

Theorem rdgssun 36248
Description: In a recursive definition where each step expands on the previous one using a union, every previous step is a subset of every later step. (Contributed by ML, 1-Apr-2022.)
Hypotheses
Ref Expression
rdgssun.1 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
rdgssun.2 𝐵 ∈ V
Assertion
Ref Expression
rdgssun ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   𝐹(𝑤)   𝑋(𝑤)

Proof of Theorem rdgssun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3797 . . . . . . . . . . . 12 𝑥[∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
2 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
3 rzal 4508 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
4 sbceq1a 3788 . . . . . . . . . . . . 13 (𝑥 = ∅ → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
53, 4mpbid 231 . . . . . . . . . . . 12 (𝑥 = ∅ → [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
61, 2, 5vtoclef 3547 . . . . . . . . . . 11 [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
7 vex 3479 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
87elsuc 6432 . . . . . . . . . . . . . . 15 (𝑦 ∈ suc 𝑥 ↔ (𝑦𝑥𝑦 = 𝑥))
9 ssun1 4172 . . . . . . . . . . . . . . . . . . . 20 (rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
10 fvex 6902 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) ∈ V
11 rdgssun.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
1211csbex 5311 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵 ∈ V
1310, 12unex 7730 . . . . . . . . . . . . . . . . . . . . 21 ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V
14 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝐴
15 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝑥
16 rdgssun.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
17 nfmpt1 5256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝑤 ∈ V ↦ (𝑤𝐵))
1816, 17nfcxfr 2902 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝐹
1918, 14nfrdg 8411 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤rec(𝐹, 𝐴)
2019, 15nffv 6899 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥)
2120nfcsb1 3917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵
2220, 21nfun 4165 . . . . . . . . . . . . . . . . . . . . . 22 𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
23 rdgeq1 8408 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴))
2416, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴)
25 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥))
26 csbeq1a 3907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
2725, 26uneq12d 4164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2814, 15, 22, 24, 27rdgsucmptf 8425 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2913, 28mpan2 690 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
309, 29sseqtrrid 4035 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
31 sstr2 3989 . . . . . . . . . . . . . . . . . . 19 ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3230, 31syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3332imim2d 57 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
3433imp 408 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
35 fveq2 6889 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥))
3635sseq1d 4013 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3730, 36syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3837adantr 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3934, 38jaod 858 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦𝑥𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
408, 39biimtrid 241 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4140ex 414 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
4241ralimdv2 3164 . . . . . . . . . . . 12 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
43 df-sbc 3778 . . . . . . . . . . . . 13 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
44 vex 3479 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4544sucex 7791 . . . . . . . . . . . . . 14 suc 𝑥 ∈ V
46 fveq2 6889 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥))
4746sseq2d 4014 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4847raleqbi1dv 3334 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑥 → (∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
49 fveq2 6889 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧))
5049sseq2d 4014 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5150raleqbi1dv 3334 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5251cbvabv 2806 . . . . . . . . . . . . . 14 {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}
5345, 48, 52elab2 3672 . . . . . . . . . . . . 13 (suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5443, 53bitri 275 . . . . . . . . . . . 12 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5542, 54syl6ibr 252 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
56 ssiun2 5050 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
5756adantl 483 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
58 vex 3479 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
59 rdglim2a 8430 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6058, 59mpan 689 . . . . . . . . . . . . . . . 16 (Lim 𝑧 → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6160adantr 482 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6257, 61sseqtrrd 4023 . . . . . . . . . . . . . 14 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6362ralrimiva 3147 . . . . . . . . . . . . 13 (Lim 𝑧 → ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
64 df-sbc 3778 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
6552eleq2i 2826 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
6664, 65bitri 275 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
67 abid 2714 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6866, 67bitri 275 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6963, 68sylibr 233 . . . . . . . . . . . 12 (Lim 𝑧[𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (Lim 𝑧 → (∀𝑥𝑧𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
716, 55, 70tfindes 7849 . . . . . . . . . 10 (𝑥 ∈ On → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
72 rsp 3245 . . . . . . . . . 10 (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
7371, 72syl 17 . . . . . . . . 9 (𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
74 eleq1 2822 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On))
7574adantl 483 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On))
76 eleq12 2824 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑥𝑌𝑋))
77 fveq2 6889 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
7877adantr 482 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
79 fveq2 6889 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8079adantl 483 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8178, 80sseq12d 4015 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
8276, 81imbi12d 345 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8375, 82imbi12d 345 . . . . . . . . 9 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8473, 83mpbii 232 . . . . . . . 8 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8584ex 414 . . . . . . 7 (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8685vtocleg 3546 . . . . . 6 (𝑌𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8786com12 32 . . . . 5 (𝑥 = 𝑋 → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8887vtocleg 3546 . . . 4 (𝑋 ∈ On → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8988pm2.43b 55 . . 3 (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
9089pm2.43b 55 . 2 (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
9190imp 408 1 ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  {cab 2710  wral 3062  Vcvv 3475  [wsbc 3777  csb 3893  cun 3946  wss 3948  c0 4322   ciun 4997  cmpt 5231  Oncon0 6362  Lim wlim 6363  suc csuc 6364  cfv 6541  reccrdg 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator