| Step | Hyp | Ref
| Expression |
| 1 | | nfsbc1v 3790 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥[∅ / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) |
| 2 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 3 | | rzal 4489 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) |
| 4 | | sbceq1a 3781 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) |
| 5 | 3, 4 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
[∅ / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) |
| 6 | 1, 2, 5 | vtoclef 3547 |
. . . . . . . . . . 11
⊢
[∅ / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) |
| 7 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 8 | 7 | elsuc 6429 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ suc 𝑥 ↔ (𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥)) |
| 9 | | ssun1 4158 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵) |
| 10 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(rec(𝐹, 𝐴)‘𝑥) ∈ V |
| 11 | | rdgssun.2 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐵 ∈ V |
| 12 | 11 | csbex 5286 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵 ∈ V |
| 13 | 10, 12 | unex 7743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵) ∈ V |
| 14 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑤𝐴 |
| 15 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑤𝑥 |
| 16 | | rdgssun.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝐹 = (𝑤 ∈ V ↦ (𝑤 ∪ 𝐵)) |
| 17 | | nfmpt1 5225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑤(𝑤 ∈ V ↦ (𝑤 ∪ 𝐵)) |
| 18 | 16, 17 | nfcxfr 2897 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤𝐹 |
| 19 | 18, 14 | nfrdg 8433 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑤rec(𝐹, 𝐴) |
| 20 | 19, 15 | nffv 6891 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑤(rec(𝐹, 𝐴)‘𝑥) |
| 21 | 20 | nfcsb1 3902 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑤⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵 |
| 22 | 20, 21 | nfun 4150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵) |
| 23 | | rdgeq1 8430 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 = (𝑤 ∈ V ↦ (𝑤 ∪ 𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤 ∪ 𝐵)), 𝐴)) |
| 24 | 16, 23 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤 ∪ 𝐵)), 𝐴) |
| 25 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥)) |
| 26 | | csbeq1a 3893 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵) |
| 27 | 25, 26 | uneq12d 4149 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤 ∪ 𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵)) |
| 28 | 14, 15, 22, 24, 27 | rdgsucmptf 8447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵)) |
| 29 | 13, 28 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ ⦋(rec(𝐹, 𝐴)‘𝑥) / 𝑤⦌𝐵)) |
| 30 | 9, 29 | sseqtrrid 4007 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)) |
| 31 | | sstr2 3970 |
. . . . . . . . . . . . . . . . . . 19
⊢
((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 32 | 30, 31 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 33 | 32 | imim2d 57 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ On → ((𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))) |
| 34 | 33 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 35 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥)) |
| 36 | 35 | sseq1d 3995 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 37 | 30, 36 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 39 | 34, 38 | jaod 859 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 40 | 8, 39 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 41 | 40 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → ((𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))) |
| 42 | 41 | ralimdv2 3150 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 43 | | df-sbc 3771 |
. . . . . . . . . . . . 13
⊢
([suc 𝑥 /
𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)}) |
| 44 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 45 | 44 | sucex 7805 |
. . . . . . . . . . . . . 14
⊢ suc 𝑥 ∈ V |
| 46 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥)) |
| 47 | 46 | sseq2d 3996 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 48 | 47 | raleqbi1dv 3321 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = suc 𝑥 → (∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))) |
| 49 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧)) |
| 50 | 49 | sseq2d 3996 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))) |
| 51 | 50 | raleqbi1dv 3321 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))) |
| 52 | 51 | cbvabv 2806 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∣ ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} |
| 53 | 45, 48, 52 | elab2 3666 |
. . . . . . . . . . . . 13
⊢ (suc
𝑥 ∈ {𝑥 ∣ ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)) |
| 54 | 43, 53 | bitri 275 |
. . . . . . . . . . . 12
⊢
([suc 𝑥 /
𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)) |
| 55 | 42, 54 | imbitrrdi 252 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) |
| 56 | | ssiun2 5028 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ ∪
𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦)) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
𝑧 ∧ 𝑦 ∈ 𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ ∪
𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦)) |
| 58 | | vex 3468 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
| 59 | | rdglim2a 8452 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = ∪ 𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦)) |
| 60 | 58, 59 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑧 → (rec(𝐹, 𝐴)‘𝑧) = ∪ 𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦)) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
𝑧 ∧ 𝑦 ∈ 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = ∪ 𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦)) |
| 62 | 57, 61 | sseqtrrd 4001 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝑧 ∧ 𝑦 ∈ 𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)) |
| 63 | 62 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (Lim
𝑧 → ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)) |
| 64 | | df-sbc 3771 |
. . . . . . . . . . . . . . 15
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)}) |
| 65 | 52 | eleq2i 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑥 ∣ ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}) |
| 66 | 64, 65 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}) |
| 67 | | abid 2718 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ {𝑧 ∣ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)) |
| 68 | 66, 67 | bitri 275 |
. . . . . . . . . . . . 13
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)) |
| 69 | 63, 68 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (Lim
𝑧 → [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) |
| 70 | 69 | a1d 25 |
. . . . . . . . . . 11
⊢ (Lim
𝑧 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) |
| 71 | 6, 55, 70 | tfindes 7863 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → ∀𝑦 ∈ 𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) |
| 72 | | rsp 3234 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) |
| 74 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On)) |
| 75 | 74 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On)) |
| 76 | | eleq12 2825 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (𝑦 ∈ 𝑥 ↔ 𝑌 ∈ 𝑋)) |
| 77 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌)) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌)) |
| 79 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋)) |
| 80 | 79 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋)) |
| 81 | 78, 80 | sseq12d 3997 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))) |
| 82 | 76, 81 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → ((𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))) |
| 83 | 75, 82 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦 ∈ 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))) |
| 84 | 73, 83 | mpbii 233 |
. . . . . . . 8
⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))) |
| 85 | 84 | ex 412 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))) |
| 86 | 85 | vtocleg 3537 |
. . . . . 6
⊢ (𝑌 ∈ 𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))) |
| 87 | 86 | com12 32 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑌 ∈ 𝑋 → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))) |
| 88 | 87 | vtocleg 3537 |
. . . 4
⊢ (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))) |
| 89 | 88 | pm2.43b 55 |
. . 3
⊢ (𝑌 ∈ 𝑋 → (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))) |
| 90 | 89 | pm2.43b 55 |
. 2
⊢ (𝑋 ∈ On → (𝑌 ∈ 𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))) |
| 91 | 90 | imp 406 |
1
⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ 𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)) |