Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgssun Structured version   Visualization version   GIF version

Theorem rdgssun 36562
Description: In a recursive definition where each step expands on the previous one using a union, every previous step is a subset of every later step. (Contributed by ML, 1-Apr-2022.)
Hypotheses
Ref Expression
rdgssun.1 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
rdgssun.2 𝐵 ∈ V
Assertion
Ref Expression
rdgssun ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   𝐹(𝑤)   𝑋(𝑤)

Proof of Theorem rdgssun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3797 . . . . . . . . . . . 12 𝑥[∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
2 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
3 rzal 4508 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
4 sbceq1a 3788 . . . . . . . . . . . . 13 (𝑥 = ∅ → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
53, 4mpbid 231 . . . . . . . . . . . 12 (𝑥 = ∅ → [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
61, 2, 5vtoclef 3546 . . . . . . . . . . 11 [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
7 vex 3478 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
87elsuc 6434 . . . . . . . . . . . . . . 15 (𝑦 ∈ suc 𝑥 ↔ (𝑦𝑥𝑦 = 𝑥))
9 ssun1 4172 . . . . . . . . . . . . . . . . . . . 20 (rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
10 fvex 6904 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) ∈ V
11 rdgssun.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
1211csbex 5311 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵 ∈ V
1310, 12unex 7735 . . . . . . . . . . . . . . . . . . . . 21 ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V
14 nfcv 2903 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝐴
15 nfcv 2903 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝑥
16 rdgssun.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
17 nfmpt1 5256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝑤 ∈ V ↦ (𝑤𝐵))
1816, 17nfcxfr 2901 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝐹
1918, 14nfrdg 8416 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤rec(𝐹, 𝐴)
2019, 15nffv 6901 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥)
2120nfcsb1 3917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵
2220, 21nfun 4165 . . . . . . . . . . . . . . . . . . . . . 22 𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
23 rdgeq1 8413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴))
2416, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴)
25 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥))
26 csbeq1a 3907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
2725, 26uneq12d 4164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2814, 15, 22, 24, 27rdgsucmptf 8430 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2913, 28mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
309, 29sseqtrrid 4035 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
31 sstr2 3989 . . . . . . . . . . . . . . . . . . 19 ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3230, 31syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3332imim2d 57 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
3433imp 407 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
35 fveq2 6891 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥))
3635sseq1d 4013 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3730, 36syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3837adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3934, 38jaod 857 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦𝑥𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
408, 39biimtrid 241 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4140ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
4241ralimdv2 3163 . . . . . . . . . . . 12 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
43 df-sbc 3778 . . . . . . . . . . . . 13 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
44 vex 3478 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4544sucex 7796 . . . . . . . . . . . . . 14 suc 𝑥 ∈ V
46 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥))
4746sseq2d 4014 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4847raleqbi1dv 3333 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑥 → (∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
49 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧))
5049sseq2d 4014 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5150raleqbi1dv 3333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5251cbvabv 2805 . . . . . . . . . . . . . 14 {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}
5345, 48, 52elab2 3672 . . . . . . . . . . . . 13 (suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5443, 53bitri 274 . . . . . . . . . . . 12 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5542, 54imbitrrdi 251 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
56 ssiun2 5050 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
5756adantl 482 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
58 vex 3478 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
59 rdglim2a 8435 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6058, 59mpan 688 . . . . . . . . . . . . . . . 16 (Lim 𝑧 → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6160adantr 481 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6257, 61sseqtrrd 4023 . . . . . . . . . . . . . 14 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6362ralrimiva 3146 . . . . . . . . . . . . 13 (Lim 𝑧 → ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
64 df-sbc 3778 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
6552eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
6664, 65bitri 274 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
67 abid 2713 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6866, 67bitri 274 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6963, 68sylibr 233 . . . . . . . . . . . 12 (Lim 𝑧[𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (Lim 𝑧 → (∀𝑥𝑧𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
716, 55, 70tfindes 7854 . . . . . . . . . 10 (𝑥 ∈ On → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
72 rsp 3244 . . . . . . . . . 10 (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
7371, 72syl 17 . . . . . . . . 9 (𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
74 eleq1 2821 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On))
7574adantl 482 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On))
76 eleq12 2823 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑥𝑌𝑋))
77 fveq2 6891 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
7877adantr 481 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
79 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8079adantl 482 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8178, 80sseq12d 4015 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
8276, 81imbi12d 344 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8375, 82imbi12d 344 . . . . . . . . 9 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8473, 83mpbii 232 . . . . . . . 8 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8584ex 413 . . . . . . 7 (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8685vtocleg 3545 . . . . . 6 (𝑌𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8786com12 32 . . . . 5 (𝑥 = 𝑋 → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8887vtocleg 3545 . . . 4 (𝑋 ∈ On → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8988pm2.43b 55 . . 3 (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
9089pm2.43b 55 . 2 (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
9190imp 407 1 ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  {cab 2709  wral 3061  Vcvv 3474  [wsbc 3777  csb 3893  cun 3946  wss 3948  c0 4322   ciun 4997  cmpt 5231  Oncon0 6364  Lim wlim 6365  suc csuc 6366  cfv 6543  reccrdg 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator