Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgssun Structured version   Visualization version   GIF version

Theorem rdgssun 34211
Description: In a recursive definition where each step expands on the previous one using a union, every previous step is a subset of every later step. (Contributed by ML, 1-Apr-2022.)
Hypotheses
Ref Expression
rdgssun.1 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
rdgssun.2 𝐵 ∈ V
Assertion
Ref Expression
rdgssun ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   𝐹(𝑤)   𝑋(𝑤)

Proof of Theorem rdgssun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3731 . . . . . . . . . . . 12 𝑥[∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
2 0ex 5109 . . . . . . . . . . . 12 ∅ ∈ V
3 rzal 4373 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
4 sbceq1a 3722 . . . . . . . . . . . . 13 (𝑥 = ∅ → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
53, 4mpbid 233 . . . . . . . . . . . 12 (𝑥 = ∅ → [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
61, 2, 5vtoclef 3528 . . . . . . . . . . 11 [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
7 vex 3443 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
87elsuc 6142 . . . . . . . . . . . . . . 15 (𝑦 ∈ suc 𝑥 ↔ (𝑦𝑥𝑦 = 𝑥))
9 ssun1 4075 . . . . . . . . . . . . . . . . . . . 20 (rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
10 fvex 6558 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) ∈ V
11 rdgssun.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
1211csbex 5113 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵 ∈ V
1310, 12unex 7333 . . . . . . . . . . . . . . . . . . . . 21 ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V
14 nfcv 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝐴
15 nfcv 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝑥
16 rdgssun.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
17 nfmpt1 5065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝑤 ∈ V ↦ (𝑤𝐵))
1816, 17nfcxfr 2949 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝐹
1918, 14nfrdg 7909 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤rec(𝐹, 𝐴)
2019, 15nffv 6555 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥)
2120nfcsb1 3838 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵
2220, 21nfun 4068 . . . . . . . . . . . . . . . . . . . . . 22 𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
23 rdgeq1 7906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴))
2416, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴)
25 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥))
26 csbeq1a 3830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
2725, 26uneq12d 4067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2814, 15, 22, 24, 27rdgsucmptf 7923 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2913, 28mpan2 687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
309, 29sseqtrrid 3947 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
31 sstr2 3902 . . . . . . . . . . . . . . . . . . 19 ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3230, 31syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3332imim2d 57 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
3433imp 407 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
35 fveq2 6545 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥))
3635sseq1d 3925 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3730, 36syl5ibrcom 248 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3837adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3934, 38jaod 854 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦𝑥𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
408, 39syl5bi 243 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4140ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
4241ralimdv2 3145 . . . . . . . . . . . 12 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
43 df-sbc 3712 . . . . . . . . . . . . 13 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
44 vex 3443 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4544sucex 7389 . . . . . . . . . . . . . 14 suc 𝑥 ∈ V
46 fveq2 6545 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥))
4746sseq2d 3926 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4847raleqbi1dv 3365 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑥 → (∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
49 fveq2 6545 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧))
5049sseq2d 3926 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5150raleqbi1dv 3365 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5251cbvabv 2929 . . . . . . . . . . . . . 14 {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}
5345, 48, 52elab2 3611 . . . . . . . . . . . . 13 (suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5443, 53bitri 276 . . . . . . . . . . . 12 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5542, 54syl6ibr 253 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
56 ssiun2 4876 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
5756adantl 482 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
58 vex 3443 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
59 rdglim2a 7928 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6058, 59mpan 686 . . . . . . . . . . . . . . . 16 (Lim 𝑧 → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6160adantr 481 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6257, 61sseqtr4d 3935 . . . . . . . . . . . . . 14 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6362ralrimiva 3151 . . . . . . . . . . . . 13 (Lim 𝑧 → ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
64 df-sbc 3712 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
6552eleq2i 2876 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
6664, 65bitri 276 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
67 abid 2781 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6866, 67bitri 276 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6963, 68sylibr 235 . . . . . . . . . . . 12 (Lim 𝑧[𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (Lim 𝑧 → (∀𝑥𝑧𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
716, 55, 70tfindes 7440 . . . . . . . . . 10 (𝑥 ∈ On → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
72 rsp 3174 . . . . . . . . . 10 (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
7371, 72syl 17 . . . . . . . . 9 (𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
74 eleq1 2872 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On))
7574adantl 482 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On))
76 eleq12 2874 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑥𝑌𝑋))
77 fveq2 6545 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
7877adantr 481 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
79 fveq2 6545 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8079adantl 482 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8178, 80sseq12d 3927 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
8276, 81imbi12d 346 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8375, 82imbi12d 346 . . . . . . . . 9 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8473, 83mpbii 234 . . . . . . . 8 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8584ex 413 . . . . . . 7 (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8685vtocleg 3526 . . . . . 6 (𝑌𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8786com12 32 . . . . 5 (𝑥 = 𝑋 → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8887vtocleg 3526 . . . 4 (𝑋 ∈ On → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8988pm2.43b 55 . . 3 (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
9089pm2.43b 55 . 2 (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
9190imp 407 1 ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1525  wcel 2083  {cab 2777  wral 3107  Vcvv 3440  [wsbc 3711  csb 3817  cun 3863  wss 3865  c0 4217   ciun 4831  cmpt 5047  Oncon0 6073  Lim wlim 6074  suc csuc 6075  cfv 6232  reccrdg 7904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-wrecs 7805  df-recs 7867  df-rdg 7905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator