Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgssun Structured version   Visualization version   GIF version

Theorem rdgssun 34211
 Description: In a recursive definition where each step expands on the previous one using a union, every previous step is a subset of every later step. (Contributed by ML, 1-Apr-2022.)
Hypotheses
Ref Expression
rdgssun.1 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
rdgssun.2 𝐵 ∈ V
Assertion
Ref Expression
rdgssun ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   𝐹(𝑤)   𝑋(𝑤)

Proof of Theorem rdgssun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3731 . . . . . . . . . . . 12 𝑥[∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
2 0ex 5109 . . . . . . . . . . . 12 ∅ ∈ V
3 rzal 4373 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
4 sbceq1a 3722 . . . . . . . . . . . . 13 (𝑥 = ∅ → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
53, 4mpbid 233 . . . . . . . . . . . 12 (𝑥 = ∅ → [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
61, 2, 5vtoclef 3528 . . . . . . . . . . 11 [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
7 vex 3443 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
87elsuc 6142 . . . . . . . . . . . . . . 15 (𝑦 ∈ suc 𝑥 ↔ (𝑦𝑥𝑦 = 𝑥))
9 ssun1 4075 . . . . . . . . . . . . . . . . . . . 20 (rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
10 fvex 6558 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) ∈ V
11 rdgssun.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
1211csbex 5113 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵 ∈ V
1310, 12unex 7333 . . . . . . . . . . . . . . . . . . . . 21 ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V
14 nfcv 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝐴
15 nfcv 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝑥
16 rdgssun.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
17 nfmpt1 5065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝑤 ∈ V ↦ (𝑤𝐵))
1816, 17nfcxfr 2949 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝐹
1918, 14nfrdg 7909 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤rec(𝐹, 𝐴)
2019, 15nffv 6555 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥)
2120nfcsb1 3838 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵
2220, 21nfun 4068 . . . . . . . . . . . . . . . . . . . . . 22 𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
23 rdgeq1 7906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴))
2416, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴)
25 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥))
26 csbeq1a 3830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
2725, 26uneq12d 4067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2814, 15, 22, 24, 27rdgsucmptf 7923 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2913, 28mpan2 687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
309, 29sseqtrrid 3947 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
31 sstr2 3902 . . . . . . . . . . . . . . . . . . 19 ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3230, 31syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3332imim2d 57 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
3433imp 407 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
35 fveq2 6545 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥))
3635sseq1d 3925 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3730, 36syl5ibrcom 248 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3837adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3934, 38jaod 854 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦𝑥𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
408, 39syl5bi 243 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4140ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
4241ralimdv2 3145 . . . . . . . . . . . 12 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
43 df-sbc 3712 . . . . . . . . . . . . 13 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
44 vex 3443 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4544sucex 7389 . . . . . . . . . . . . . 14 suc 𝑥 ∈ V
46 fveq2 6545 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥))
4746sseq2d 3926 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4847raleqbi1dv 3365 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑥 → (∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
49 fveq2 6545 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧))
5049sseq2d 3926 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5150raleqbi1dv 3365 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5251cbvabv 2929 . . . . . . . . . . . . . 14 {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}
5345, 48, 52elab2 3611 . . . . . . . . . . . . 13 (suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5443, 53bitri 276 . . . . . . . . . . . 12 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5542, 54syl6ibr 253 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
56 ssiun2 4876 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
5756adantl 482 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
58 vex 3443 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
59 rdglim2a 7928 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6058, 59mpan 686 . . . . . . . . . . . . . . . 16 (Lim 𝑧 → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6160adantr 481 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6257, 61sseqtr4d 3935 . . . . . . . . . . . . . 14 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6362ralrimiva 3151 . . . . . . . . . . . . 13 (Lim 𝑧 → ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
64 df-sbc 3712 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
6552eleq2i 2876 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
6664, 65bitri 276 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
67 abid 2781 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6866, 67bitri 276 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6963, 68sylibr 235 . . . . . . . . . . . 12 (Lim 𝑧[𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (Lim 𝑧 → (∀𝑥𝑧𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
716, 55, 70tfindes 7440 . . . . . . . . . 10 (𝑥 ∈ On → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
72 rsp 3174 . . . . . . . . . 10 (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
7371, 72syl 17 . . . . . . . . 9 (𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
74 eleq1 2872 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On))
7574adantl 482 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On))
76 eleq12 2874 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑥𝑌𝑋))
77 fveq2 6545 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
7877adantr 481 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
79 fveq2 6545 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8079adantl 482 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8178, 80sseq12d 3927 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
8276, 81imbi12d 346 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8375, 82imbi12d 346 . . . . . . . . 9 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8473, 83mpbii 234 . . . . . . . 8 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8584ex 413 . . . . . . 7 (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8685vtocleg 3526 . . . . . 6 (𝑌𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8786com12 32 . . . . 5 (𝑥 = 𝑋 → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8887vtocleg 3526 . . . 4 (𝑋 ∈ On → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8988pm2.43b 55 . . 3 (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
9089pm2.43b 55 . 2 (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
9190imp 407 1 ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 842   = wceq 1525   ∈ wcel 2083  {cab 2777  ∀wral 3107  Vcvv 3440  [wsbc 3711  ⦋csb 3817   ∪ cun 3863   ⊆ wss 3865  ∅c0 4217  ∪ ciun 4831   ↦ cmpt 5047  Oncon0 6073  Lim wlim 6074  suc csuc 6075  ‘cfv 6232  reccrdg 7904 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-wrecs 7805  df-recs 7867  df-rdg 7905 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator