Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgssun Structured version   Visualization version   GIF version

Theorem rdgssun 37361
Description: In a recursive definition where each step expands on the previous one using a union, every previous step is a subset of every later step. (Contributed by ML, 1-Apr-2022.)
Hypotheses
Ref Expression
rdgssun.1 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
rdgssun.2 𝐵 ∈ V
Assertion
Ref Expression
rdgssun ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   𝐹(𝑤)   𝑋(𝑤)

Proof of Theorem rdgssun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3811 . . . . . . . . . . . 12 𝑥[∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
2 0ex 5313 . . . . . . . . . . . 12 ∅ ∈ V
3 rzal 4515 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
4 sbceq1a 3802 . . . . . . . . . . . . 13 (𝑥 = ∅ → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
53, 4mpbid 232 . . . . . . . . . . . 12 (𝑥 = ∅ → [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
61, 2, 5vtoclef 3563 . . . . . . . . . . 11 [∅ / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)
7 vex 3482 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
87elsuc 6456 . . . . . . . . . . . . . . 15 (𝑦 ∈ suc 𝑥 ↔ (𝑦𝑥𝑦 = 𝑥))
9 ssun1 4188 . . . . . . . . . . . . . . . . . . . 20 (rec(𝐹, 𝐴)‘𝑥) ⊆ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
10 fvex 6920 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) ∈ V
11 rdgssun.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
1211csbex 5317 . . . . . . . . . . . . . . . . . . . . . 22 (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵 ∈ V
1310, 12unex 7763 . . . . . . . . . . . . . . . . . . . . 21 ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V
14 nfcv 2903 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝐴
15 nfcv 2903 . . . . . . . . . . . . . . . . . . . . . 22 𝑤𝑥
16 rdgssun.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵))
17 nfmpt1 5256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤(𝑤 ∈ V ↦ (𝑤𝐵))
1816, 17nfcxfr 2901 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝐹
1918, 14nfrdg 8453 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤rec(𝐹, 𝐴)
2019, 15nffv 6917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥)
2120nfcsb1 3932 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤(rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵
2220, 21nfun 4180 . . . . . . . . . . . . . . . . . . . . . 22 𝑤((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
23 rdgeq1 8450 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 = (𝑤 ∈ V ↦ (𝑤𝐵)) → rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴))
2416, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 rec(𝐹, 𝐴) = rec((𝑤 ∈ V ↦ (𝑤𝐵)), 𝐴)
25 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝑤 = (rec(𝐹, 𝐴)‘𝑥))
26 csbeq1a 3922 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → 𝐵 = (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵)
2725, 26uneq12d 4179 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (rec(𝐹, 𝐴)‘𝑥) → (𝑤𝐵) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2814, 15, 22, 24, 27rdgsucmptf 8467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
2913, 28mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑥) = ((rec(𝐹, 𝐴)‘𝑥) ∪ (rec(𝐹, 𝐴)‘𝑥) / 𝑤𝐵))
309, 29sseqtrrid 4049 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
31 sstr2 4002 . . . . . . . . . . . . . . . . . . 19 ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ((rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3230, 31syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3332imim2d 57 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
3433imp 406 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
35 fveq2 6907 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑥))
3635sseq1d 4027 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3730, 36syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3837adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 = 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
3934, 38jaod 859 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → ((𝑦𝑥𝑦 = 𝑥) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
408, 39biimtrid 242 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4140ex 412 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) → (𝑦 ∈ suc 𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))))
4241ralimdv2 3161 . . . . . . . . . . . 12 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
43 df-sbc 3792 . . . . . . . . . . . . 13 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
44 vex 3482 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4544sucex 7826 . . . . . . . . . . . . . 14 suc 𝑥 ∈ V
46 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘suc 𝑥))
4746sseq2d 4028 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
4847raleqbi1dv 3336 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑥 → (∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥)))
49 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑧))
5049sseq2d 4028 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5150raleqbi1dv 3336 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)))
5251cbvabv 2810 . . . . . . . . . . . . . 14 {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} = {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)}
5345, 48, 52elab2 3685 . . . . . . . . . . . . 13 (suc 𝑥 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5443, 53bitri 275 . . . . . . . . . . . 12 ([suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑥(rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘suc 𝑥))
5542, 54imbitrrdi 252 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [suc 𝑥 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
56 ssiun2 5052 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
5756adantl 481 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
58 vex 3482 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
59 rdglim2a 8472 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6058, 59mpan 690 . . . . . . . . . . . . . . . 16 (Lim 𝑧 → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6160adantr 480 . . . . . . . . . . . . . . 15 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑧) = 𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦))
6257, 61sseqtrrd 4037 . . . . . . . . . . . . . 14 ((Lim 𝑧𝑦𝑧) → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6362ralrimiva 3144 . . . . . . . . . . . . 13 (Lim 𝑧 → ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
64 df-sbc 3792 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)})
6552eleq2i 2831 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑥 ∣ ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)} ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
6664, 65bitri 275 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ 𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)})
67 abid 2716 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∣ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧)} ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6866, 67bitri 275 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑧))
6963, 68sylibr 234 . . . . . . . . . . . 12 (Lim 𝑧[𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (Lim 𝑧 → (∀𝑥𝑧𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → [𝑧 / 𝑥]𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
716, 55, 70tfindes 7884 . . . . . . . . . 10 (𝑥 ∈ On → ∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))
72 rsp 3245 . . . . . . . . . 10 (∀𝑦𝑥 (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
7371, 72syl 17 . . . . . . . . 9 (𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)))
74 eleq1 2827 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ On ↔ 𝑋 ∈ On))
7574adantl 481 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑥 ∈ On ↔ 𝑋 ∈ On))
76 eleq12 2829 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑥𝑌𝑋))
77 fveq2 6907 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
7877adantr 480 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑌))
79 fveq2 6907 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8079adantl 481 . . . . . . . . . . . 12 ((𝑦 = 𝑌𝑥 = 𝑋) → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝑋))
8178, 80sseq12d 4029 . . . . . . . . . . 11 ((𝑦 = 𝑌𝑥 = 𝑋) → ((rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
8276, 81imbi12d 344 . . . . . . . . . 10 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8375, 82imbi12d 344 . . . . . . . . 9 ((𝑦 = 𝑌𝑥 = 𝑋) → ((𝑥 ∈ On → (𝑦𝑥 → (rec(𝐹, 𝐴)‘𝑦) ⊆ (rec(𝐹, 𝐴)‘𝑥))) ↔ (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8473, 83mpbii 233 . . . . . . . 8 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
8584ex 412 . . . . . . 7 (𝑦 = 𝑌 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8685vtocleg 3553 . . . . . 6 (𝑌𝑋 → (𝑥 = 𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8786com12 32 . . . . 5 (𝑥 = 𝑋 → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8887vtocleg 3553 . . . 4 (𝑋 ∈ On → (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))))
8988pm2.43b 55 . . 3 (𝑌𝑋 → (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))))
9089pm2.43b 55 . 2 (𝑋 ∈ On → (𝑌𝑋 → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋)))
9190imp 406 1 ((𝑋 ∈ On ∧ 𝑌𝑋) → (rec(𝐹, 𝐴)‘𝑌) ⊆ (rec(𝐹, 𝐴)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  {cab 2712  wral 3059  Vcvv 3478  [wsbc 3791  csb 3908  cun 3961  wss 3963  c0 4339   ciun 4996  cmpt 5231  Oncon0 6386  Lim wlim 6387  suc csuc 6388  cfv 6563  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator