MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind-raph Structured version   Visualization version   GIF version

Theorem nn0ind-raph 12350
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind-raph.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind-raph.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind-raph.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind-raph.5 𝜓
nn0ind-raph.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind-raph (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind-raph
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12165 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 dfsbcq2 3714 . . . 4 (𝑧 = 1 → ([𝑧 / 𝑥]𝜑[1 / 𝑥]𝜑))
3 nfv 1918 . . . . 5 𝑥𝜒
4 nn0ind-raph.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
53, 4sbhypf 3481 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜒))
6 nfv 1918 . . . . 5 𝑥𝜃
7 nn0ind-raph.3 . . . . 5 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
86, 7sbhypf 3481 . . . 4 (𝑧 = (𝑦 + 1) → ([𝑧 / 𝑥]𝜑𝜃))
9 nfv 1918 . . . . 5 𝑥𝜏
10 nn0ind-raph.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
119, 10sbhypf 3481 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑𝜏))
12 nfsbc1v 3731 . . . . 5 𝑥[1 / 𝑥]𝜑
13 1ex 10902 . . . . 5 1 ∈ V
14 c0ex 10900 . . . . . . 7 0 ∈ V
15 0nn0 12178 . . . . . . . . . . . 12 0 ∈ ℕ0
16 eleq1a 2834 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (𝑦 = 0 → 𝑦 ∈ ℕ0))
1715, 16ax-mp 5 . . . . . . . . . . 11 (𝑦 = 0 → 𝑦 ∈ ℕ0)
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15 𝜓
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝜑𝜓))
2018, 19mpbiri 257 . . . . . . . . . . . . . 14 (𝑥 = 0 → 𝜑)
21 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2221, 4syl6bir 253 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (𝑥 = 0 → (𝜑𝜒)))
2322pm5.74d 272 . . . . . . . . . . . . . 14 (𝑦 = 0 → ((𝑥 = 0 → 𝜑) ↔ (𝑥 = 0 → 𝜒)))
2420, 23mpbii 232 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 0 → 𝜒))
2524com12 32 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑦 = 0 → 𝜒))
2614, 25vtocle 3514 . . . . . . . . . . 11 (𝑦 = 0 → 𝜒)
27 nn0ind-raph.6 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝜒𝜃))
2817, 26, 27sylc 65 . . . . . . . . . 10 (𝑦 = 0 → 𝜃)
2928adantr 480 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜃)
30 oveq1 7262 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
31 0p1e1 12025 . . . . . . . . . . . . 13 (0 + 1) = 1
3230, 31eqtrdi 2795 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 1) = 1)
3332eqeq2d 2749 . . . . . . . . . . 11 (𝑦 = 0 → (𝑥 = (𝑦 + 1) ↔ 𝑥 = 1))
3433, 7syl6bir 253 . . . . . . . . . 10 (𝑦 = 0 → (𝑥 = 1 → (𝜑𝜃)))
3534imp 406 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → (𝜑𝜃))
3629, 35mpbird 256 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜑)
3736ex 412 . . . . . . 7 (𝑦 = 0 → (𝑥 = 1 → 𝜑))
3814, 37vtocle 3514 . . . . . 6 (𝑥 = 1 → 𝜑)
39 sbceq1a 3722 . . . . . 6 (𝑥 = 1 → (𝜑[1 / 𝑥]𝜑))
4038, 39mpbid 231 . . . . 5 (𝑥 = 1 → [1 / 𝑥]𝜑)
4112, 13, 40vtoclef 3513 . . . 4 [1 / 𝑥]𝜑
42 nnnn0 12170 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4342, 27syl 17 . . . 4 (𝑦 ∈ ℕ → (𝜒𝜃))
442, 5, 8, 11, 41, 43nnind 11921 . . 3 (𝐴 ∈ ℕ → 𝜏)
45 nfv 1918 . . . . 5 𝑥(0 = 𝐴𝜏)
46 eqeq1 2742 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴 ↔ 0 = 𝐴))
4719bicomd 222 . . . . . . . . 9 (𝑥 = 0 → (𝜓𝜑))
4847, 10sylan9bb 509 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → (𝜓𝜏))
4918, 48mpbii 232 . . . . . . 7 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → 𝜏)
5049ex 412 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴𝜏))
5146, 50sylbird 259 . . . . 5 (𝑥 = 0 → (0 = 𝐴𝜏))
5245, 14, 51vtoclef 3513 . . . 4 (0 = 𝐴𝜏)
5352eqcoms 2746 . . 3 (𝐴 = 0 → 𝜏)
5444, 53jaoi 853 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → 𝜏)
551, 54sylbi 216 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  [wsb 2068  wcel 2108  [wsbc 3711  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-n0 12164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator