MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind-raph Structured version   Visualization version   GIF version

Theorem nn0ind-raph 12603
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind-raph.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind-raph.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind-raph.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind-raph.5 𝜓
nn0ind-raph.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind-raph (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind-raph
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12415 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 dfsbcq2 3742 . . . 4 (𝑧 = 1 → ([𝑧 / 𝑥]𝜑[1 / 𝑥]𝜑))
3 nfv 1917 . . . . 5 𝑥𝜒
4 nn0ind-raph.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
53, 4sbhypf 3507 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜒))
6 nfv 1917 . . . . 5 𝑥𝜃
7 nn0ind-raph.3 . . . . 5 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
86, 7sbhypf 3507 . . . 4 (𝑧 = (𝑦 + 1) → ([𝑧 / 𝑥]𝜑𝜃))
9 nfv 1917 . . . . 5 𝑥𝜏
10 nn0ind-raph.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
119, 10sbhypf 3507 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑𝜏))
12 nfsbc1v 3759 . . . . 5 𝑥[1 / 𝑥]𝜑
13 1ex 11151 . . . . 5 1 ∈ V
14 c0ex 11149 . . . . . . 7 0 ∈ V
15 0nn0 12428 . . . . . . . . . . . 12 0 ∈ ℕ0
16 eleq1a 2833 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (𝑦 = 0 → 𝑦 ∈ ℕ0))
1715, 16ax-mp 5 . . . . . . . . . . 11 (𝑦 = 0 → 𝑦 ∈ ℕ0)
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15 𝜓
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝜑𝜓))
2018, 19mpbiri 257 . . . . . . . . . . . . . 14 (𝑥 = 0 → 𝜑)
21 eqeq2 2748 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2221, 4syl6bir 253 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (𝑥 = 0 → (𝜑𝜒)))
2322pm5.74d 272 . . . . . . . . . . . . . 14 (𝑦 = 0 → ((𝑥 = 0 → 𝜑) ↔ (𝑥 = 0 → 𝜒)))
2420, 23mpbii 232 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 0 → 𝜒))
2524com12 32 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑦 = 0 → 𝜒))
2614, 25vtocle 3544 . . . . . . . . . . 11 (𝑦 = 0 → 𝜒)
27 nn0ind-raph.6 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝜒𝜃))
2817, 26, 27sylc 65 . . . . . . . . . 10 (𝑦 = 0 → 𝜃)
2928adantr 481 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜃)
30 oveq1 7364 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
31 0p1e1 12275 . . . . . . . . . . . . 13 (0 + 1) = 1
3230, 31eqtrdi 2792 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 1) = 1)
3332eqeq2d 2747 . . . . . . . . . . 11 (𝑦 = 0 → (𝑥 = (𝑦 + 1) ↔ 𝑥 = 1))
3433, 7syl6bir 253 . . . . . . . . . 10 (𝑦 = 0 → (𝑥 = 1 → (𝜑𝜃)))
3534imp 407 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → (𝜑𝜃))
3629, 35mpbird 256 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜑)
3736ex 413 . . . . . . 7 (𝑦 = 0 → (𝑥 = 1 → 𝜑))
3814, 37vtocle 3544 . . . . . 6 (𝑥 = 1 → 𝜑)
39 sbceq1a 3750 . . . . . 6 (𝑥 = 1 → (𝜑[1 / 𝑥]𝜑))
4038, 39mpbid 231 . . . . 5 (𝑥 = 1 → [1 / 𝑥]𝜑)
4112, 13, 40vtoclef 3515 . . . 4 [1 / 𝑥]𝜑
42 nnnn0 12420 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4342, 27syl 17 . . . 4 (𝑦 ∈ ℕ → (𝜒𝜃))
442, 5, 8, 11, 41, 43nnind 12171 . . 3 (𝐴 ∈ ℕ → 𝜏)
45 nfv 1917 . . . . 5 𝑥(0 = 𝐴𝜏)
46 eqeq1 2740 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴 ↔ 0 = 𝐴))
4719bicomd 222 . . . . . . . . 9 (𝑥 = 0 → (𝜓𝜑))
4847, 10sylan9bb 510 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → (𝜓𝜏))
4918, 48mpbii 232 . . . . . . 7 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → 𝜏)
5049ex 413 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴𝜏))
5146, 50sylbird 259 . . . . 5 (𝑥 = 0 → (0 = 𝐴𝜏))
5245, 14, 51vtoclef 3515 . . . 4 (0 = 𝐴𝜏)
5352eqcoms 2744 . . 3 (𝐴 = 0 → 𝜏)
5444, 53jaoi 855 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → 𝜏)
551, 54sylbi 216 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  [wsb 2067  wcel 2106  [wsbc 3739  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-nn 12154  df-n0 12414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator