![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclgOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of vtoclg 3556 as of 20-Apr-2024. (Contributed by NM, 17-Apr-1995.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclgOLDOLD | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | vtoclg.2 | . 2 ⊢ 𝜑 | |
4 | 1, 2, 3 | vtoclg1f 3555 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-clel 2810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |