Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8ft Structured version   Visualization version   GIF version

Theorem wl-sb8ft 37497
Description: Substitution of variable in universal quantifier. Closed form of sb8f 2359. (Contributed by Wolf Lammen, 27-Apr-2025.)
Assertion
Ref Expression
wl-sb8ft (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb8ft
StepHypRef Expression
1 sbft 2271 . . . 4 (Ⅎ𝑦𝜑 → ([𝑥 / 𝑦]𝜑𝜑))
21alimi 1809 . . 3 (∀𝑥𝑦𝜑 → ∀𝑥([𝑥 / 𝑦]𝜑𝜑))
3 albi 1816 . . 3 (∀𝑥([𝑥 / 𝑦]𝜑𝜑) → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑))
42, 3syl 17 . 2 (∀𝑥𝑦𝜑 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑))
5 wl-sb9v 37496 . 2 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
64, 5bitr3di 286 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  wl-sb8eft  37498
  Copyright terms: Public domain W3C validator