Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8ft Structured version   Visualization version   GIF version

Theorem wl-sb8ft 37050
Description: Substitution of variable in universal quantifier. Closed form of sb8f 2344. (Contributed by Wolf Lammen, 27-Apr-2025.)
Assertion
Ref Expression
wl-sb8ft (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb8ft
StepHypRef Expression
1 sbft 2256 . . . 4 (Ⅎ𝑦𝜑 → ([𝑥 / 𝑦]𝜑𝜑))
21alimi 1805 . . 3 (∀𝑥𝑦𝜑 → ∀𝑥([𝑥 / 𝑦]𝜑𝜑))
3 albi 1812 . . 3 (∀𝑥([𝑥 / 𝑦]𝜑𝜑) → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑))
42, 3syl 17 . 2 (∀𝑥𝑦𝜑 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑))
5 wl-sb9v 37049 . 2 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
64, 5bitr3di 285 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wnf 1777  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  wl-sb8eft  37051
  Copyright terms: Public domain W3C validator