| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb8ft | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in universal quantifier. Closed form of sb8f 2354. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| wl-sb8ft | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbft 2269 | . . . 4 ⊢ (Ⅎ𝑦𝜑 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | |
| 2 | 1 | alimi 1810 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | albi 1817 | . . 3 ⊢ (∀𝑥([𝑥 / 𝑦]𝜑 ↔ 𝜑) → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝜑)) |
| 5 | wl-sb9v 37525 | . 2 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
| 6 | 4, 5 | bitr3di 286 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: wl-sb8eft 37527 |
| Copyright terms: Public domain | W3C validator |