![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbco3 2504 necon2bbid 2976 notzfaus 5351 fressnfv 7150 eluniima 7241 dfac2b 10120 alephval2 10562 adderpqlem 10944 1idpr 11019 leloe 11296 negeq0 11510 addeq0 11633 muleqadd 11854 addltmul 12444 xrleloe 13119 fzrev 13560 mod0 13837 modirr 13903 cjne0 15106 lenegsq 15263 fsumsplit 15683 sumsplit 15710 dvdsabseq 16252 xpsfrnel 17504 isacs2 17593 acsfn 17599 comfeq 17646 sgrp2nmndlem3 18837 resscntz 19234 gexdvds 19489 hauscmplem 23220 hausdiag 23459 utop3cls 24066 affineequivne 26663 eqscut2 27643 ltgov 28272 ax5seglem4 28614 mdsl2i 31999 rspc2daf 32132 cycpmco2 32719 pl1cn 33390 fineqvpow 34551 satefvfmla1 34871 bj-isrvec 36631 topdifinfeq 36687 finxpreclem6 36733 ftc1anclem5 37021 fdc1 37070 relcnveq 37647 relcnveq2 37648 elrelscnveq 37818 elrelscnveq2 37819 lcvexchlem1 38360 lkreqN 38496 glbconxN 38705 islpln5 38862 islvol5 38906 cdlemefrs29bpre0 39723 cdlemg17h 39995 cdlemg33b 40034 tfsconcat0i 42550 tfsconcat0b 42551 oadif1lem 42584 oadif1 42585 brnonrel 42795 frege92 43161 e2ebind 43779 stoweidlem28 45195 |
Copyright terms: Public domain | W3C validator |