Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbco3 2515 necon2bbid 2985 notzfaus 5294 fressnfv 7064 eluniima 7155 dfac2b 9936 alephval2 10378 adderpqlem 10760 1idpr 10835 leloe 11111 negeq0 11325 addeq0 11448 muleqadd 11669 addltmul 12259 xrleloe 12928 fzrev 13369 mod0 13646 modirr 13712 cjne0 14923 lenegsq 15081 fsumsplit 15502 sumsplit 15529 dvdsabseq 16071 xpsfrnel 17322 isacs2 17411 acsfn 17417 comfeq 17464 sgrp2nmndlem3 18613 resscntz 18987 gexdvds 19238 hauscmplem 22606 hausdiag 22845 utop3cls 23452 affineequivne 26026 ltgov 27007 ax5seglem4 27349 mdsl2i 30733 rspc2daf 30865 cycpmco2 31449 pl1cn 31954 fineqvpow 33114 satefvfmla1 33436 eqscut2 34049 bj-isrvec 35513 topdifinfeq 35569 finxpreclem6 35615 ftc1anclem5 35902 fdc1 35952 relcnveq 36535 relcnveq2 36536 elrelscnveq 36706 elrelscnveq2 36707 lcvexchlem1 37248 lkreqN 37384 glbconxN 37592 islpln5 37749 islvol5 37793 cdlemefrs29bpre0 38610 cdlemg17h 38882 cdlemg33b 38921 brnonrel 41410 frege92 41776 e2ebind 42396 stoweidlem28 43798 |
Copyright terms: Public domain | W3C validator |