| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2512 necon2bbid 2969 notzfaus 5299 fressnfv 7088 eluniima 7179 dfac2b 10014 alephval2 10455 adderpqlem 10837 1idpr 10912 leloe 11191 negeq0 11407 addeq0 11532 muleqadd 11753 addltmul 12349 xrleloe 13035 fzrev 13479 mod0 13772 modirr 13841 cjne0 15062 lenegsq 15220 fsumsplit 15640 sumsplit 15667 dvdsabseq 16216 xpsfrnel 17458 isacs2 17551 acsfn 17557 comfeq 17604 sgrp2nmndlem3 18825 resscntz 19238 gexdvds 19489 hauscmplem 23314 hausdiag 23553 utop3cls 24159 affineequivne 26757 eqscut2 27740 zs12ge0 28386 ltgov 28568 ax5seglem4 28903 mdsl2i 32292 rspc2daf 32435 cycpmco2 33092 cntrval2 33130 pl1cn 33958 fineqvpow 35106 satefvfmla1 35437 bj-isrvec 37307 topdifinfeq 37363 finxpreclem6 37409 wl-sb8ft 37563 ftc1anclem5 37716 fdc1 37765 relcnveq 38335 relcnveq2 38336 elrelscnveq 38508 elrelscnveq2 38509 lcvexchlem1 39052 lkreqN 39188 glbconxN 39396 islpln5 39553 islvol5 39597 cdlemefrs29bpre0 40414 cdlemg17h 40686 cdlemg33b 40725 tfsconcat0i 43357 tfsconcat0b 43358 oadif1lem 43391 oadif1 43392 brnonrel 43601 frege92 43967 e2ebind 44575 stoweidlem28 46045 clnbupgrel 47844 0funcg2 49095 |
| Copyright terms: Public domain | W3C validator |