| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2511 necon2bbid 2968 notzfaus 5318 fressnfv 7132 eluniima 7224 dfac2b 10084 alephval2 10525 adderpqlem 10907 1idpr 10982 leloe 11260 negeq0 11476 addeq0 11601 muleqadd 11822 addltmul 12418 xrleloe 13104 fzrev 13548 mod0 13838 modirr 13907 cjne0 15129 lenegsq 15287 fsumsplit 15707 sumsplit 15734 dvdsabseq 16283 xpsfrnel 17525 isacs2 17614 acsfn 17620 comfeq 17667 sgrp2nmndlem3 18852 resscntz 19265 gexdvds 19514 hauscmplem 23293 hausdiag 23532 utop3cls 24139 affineequivne 26737 eqscut2 27718 zs12ge0 28342 ltgov 28524 ax5seglem4 28859 mdsl2i 32251 rspc2daf 32395 cycpmco2 33090 cntrval2 33128 pl1cn 33945 fineqvpow 35086 satefvfmla1 35412 bj-isrvec 37282 topdifinfeq 37338 finxpreclem6 37384 wl-sb8ft 37538 ftc1anclem5 37691 fdc1 37740 relcnveq 38310 relcnveq2 38311 elrelscnveq 38483 elrelscnveq2 38484 lcvexchlem1 39027 lkreqN 39163 glbconxN 39372 islpln5 39529 islvol5 39573 cdlemefrs29bpre0 40390 cdlemg17h 40662 cdlemg33b 40701 tfsconcat0i 43334 tfsconcat0b 43335 oadif1lem 43368 oadif1 43369 brnonrel 43578 frege92 43944 e2ebind 44553 stoweidlem28 46026 clnbupgrel 47835 0funcg2 49073 |
| Copyright terms: Public domain | W3C validator |