![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sbco3 2521 necon2bbid 2990 notzfaus 5381 fressnfv 7194 eluniima 7287 dfac2b 10200 alephval2 10641 adderpqlem 11023 1idpr 11098 leloe 11376 negeq0 11590 addeq0 11713 muleqadd 11934 addltmul 12529 xrleloe 13206 fzrev 13647 mod0 13927 modirr 13993 cjne0 15212 lenegsq 15369 fsumsplit 15789 sumsplit 15816 dvdsabseq 16361 xpsfrnel 17622 isacs2 17711 acsfn 17717 comfeq 17764 sgrp2nmndlem3 18960 resscntz 19373 gexdvds 19626 hauscmplem 23435 hausdiag 23674 utop3cls 24281 affineequivne 26888 eqscut2 27869 ltgov 28623 ax5seglem4 28965 mdsl2i 32354 rspc2daf 32495 cycpmco2 33126 pl1cn 33901 fineqvpow 35072 satefvfmla1 35393 bj-isrvec 37260 topdifinfeq 37316 finxpreclem6 37362 wl-sb8ft 37504 ftc1anclem5 37657 fdc1 37706 relcnveq 38278 relcnveq2 38279 elrelscnveq 38448 elrelscnveq2 38449 lcvexchlem1 38990 lkreqN 39126 glbconxN 39335 islpln5 39492 islvol5 39536 cdlemefrs29bpre0 40353 cdlemg17h 40625 cdlemg33b 40664 tfsconcat0i 43307 tfsconcat0b 43308 oadif1lem 43341 oadif1 43342 brnonrel 43551 frege92 43917 e2ebind 44534 stoweidlem28 45949 clnbupgrel 47707 |
Copyright terms: Public domain | W3C validator |