| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2518 necon2bbid 2976 notzfaus 5338 fressnfv 7155 eluniima 7247 dfac2b 10150 alephval2 10591 adderpqlem 10973 1idpr 11048 leloe 11326 negeq0 11542 addeq0 11665 muleqadd 11886 addltmul 12482 xrleloe 13165 fzrev 13609 mod0 13898 modirr 13965 cjne0 15187 lenegsq 15344 fsumsplit 15762 sumsplit 15789 dvdsabseq 16337 xpsfrnel 17581 isacs2 17670 acsfn 17676 comfeq 17723 sgrp2nmndlem3 18908 resscntz 19321 gexdvds 19570 hauscmplem 23349 hausdiag 23588 utop3cls 24195 affineequivne 26794 eqscut2 27775 zs12ge0 28399 ltgov 28581 ax5seglem4 28916 mdsl2i 32308 rspc2daf 32452 cycpmco2 33149 pl1cn 33991 fineqvpow 35132 satefvfmla1 35452 bj-isrvec 37317 topdifinfeq 37373 finxpreclem6 37419 wl-sb8ft 37573 ftc1anclem5 37726 fdc1 37775 relcnveq 38345 relcnveq2 38346 elrelscnveq 38515 elrelscnveq2 38516 lcvexchlem1 39057 lkreqN 39193 glbconxN 39402 islpln5 39559 islvol5 39603 cdlemefrs29bpre0 40420 cdlemg17h 40692 cdlemg33b 40731 tfsconcat0i 43336 tfsconcat0b 43337 oadif1lem 43370 oadif1 43371 brnonrel 43580 frege92 43946 e2ebind 44555 stoweidlem28 46024 clnbupgrel 47815 0funcg2 49016 |
| Copyright terms: Public domain | W3C validator |