| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2515 necon2bbid 2973 notzfaus 5305 fressnfv 7102 eluniima 7193 dfac2b 10032 alephval2 10473 adderpqlem 10855 1idpr 10930 leloe 11209 negeq0 11425 addeq0 11550 muleqadd 11771 addltmul 12367 xrleloe 13053 fzrev 13497 mod0 13790 modirr 13859 cjne0 15080 lenegsq 15238 fsumsplit 15658 sumsplit 15685 dvdsabseq 16234 xpsfrnel 17476 isacs2 17569 acsfn 17575 comfeq 17622 sgrp2nmndlem3 18843 resscntz 19255 gexdvds 19506 hauscmplem 23331 hausdiag 23570 utop3cls 24176 affineequivne 26774 eqscut2 27757 zs12ge0 28403 ltgov 28585 ax5seglem4 28921 mdsl2i 32313 rspc2daf 32456 cycpmco2 33113 cntrval2 33151 pl1cn 33979 fineqvpow 35149 satefvfmla1 35480 bj-isrvec 37349 topdifinfeq 37405 finxpreclem6 37451 wl-sb8ft 37605 ftc1anclem5 37747 fdc1 37796 relcnveq 38370 relcnveq2 38371 elrelscnveq 38650 elrelscnveq2 38651 lcvexchlem1 39143 lkreqN 39279 glbconxN 39487 islpln5 39644 islvol5 39688 cdlemefrs29bpre0 40505 cdlemg17h 40777 cdlemg33b 40816 tfsconcat0i 43452 tfsconcat0b 43453 oadif1lem 43486 oadif1 43487 brnonrel 43696 frege92 44062 e2ebind 44670 stoweidlem28 46140 clnbupgrel 47948 0funcg2 49199 |
| Copyright terms: Public domain | W3C validator |