| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2511 necon2bbid 2968 notzfaus 5305 fressnfv 7098 eluniima 7190 dfac2b 10044 alephval2 10485 adderpqlem 10867 1idpr 10942 leloe 11220 negeq0 11436 addeq0 11561 muleqadd 11782 addltmul 12378 xrleloe 13064 fzrev 13508 mod0 13798 modirr 13867 cjne0 15088 lenegsq 15246 fsumsplit 15666 sumsplit 15693 dvdsabseq 16242 xpsfrnel 17484 isacs2 17577 acsfn 17583 comfeq 17630 sgrp2nmndlem3 18817 resscntz 19230 gexdvds 19481 hauscmplem 23309 hausdiag 23548 utop3cls 24155 affineequivne 26753 eqscut2 27735 zs12ge0 28378 ltgov 28560 ax5seglem4 28895 mdsl2i 32284 rspc2daf 32428 cycpmco2 33088 cntrval2 33126 pl1cn 33921 fineqvpow 35070 satefvfmla1 35397 bj-isrvec 37267 topdifinfeq 37323 finxpreclem6 37369 wl-sb8ft 37523 ftc1anclem5 37676 fdc1 37725 relcnveq 38295 relcnveq2 38296 elrelscnveq 38468 elrelscnveq2 38469 lcvexchlem1 39012 lkreqN 39148 glbconxN 39357 islpln5 39514 islvol5 39558 cdlemefrs29bpre0 40375 cdlemg17h 40647 cdlemg33b 40686 tfsconcat0i 43318 tfsconcat0b 43319 oadif1lem 43352 oadif1 43353 brnonrel 43562 frege92 43928 e2ebind 44537 stoweidlem28 46010 clnbupgrel 47819 0funcg2 49057 |
| Copyright terms: Public domain | W3C validator |