Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 283 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbco3 2518 necon2bbid 2988 notzfaus 5288 fressnfv 7026 eluniima 7117 dfac2b 9870 alephval2 10312 adderpqlem 10694 1idpr 10769 leloe 11045 negeq0 11258 addeq0 11381 muleqadd 11602 addltmul 12192 xrleloe 12860 fzrev 13301 mod0 13577 modirr 13643 cjne0 14855 lenegsq 15013 fsumsplit 15434 sumsplit 15461 dvdsabseq 16003 xpsfrnel 17254 isacs2 17343 acsfn 17349 comfeq 17396 sgrp2nmndlem3 18545 resscntz 18919 gexdvds 19170 hauscmplem 22538 hausdiag 22777 utop3cls 23384 affineequivne 25958 ltgov 26939 ax5seglem4 27281 mdsl2i 30663 rspc2daf 30795 cycpmco2 31379 pl1cn 31884 fineqvpow 33044 satefvfmla1 33366 eqscut2 33979 bj-isrvec 35444 topdifinfeq 35500 finxpreclem6 35546 ftc1anclem5 35833 fdc1 35883 relcnveq 36436 relcnveq2 36437 elrelscnveq 36589 elrelscnveq2 36590 lcvexchlem1 37027 lkreqN 37163 glbconxN 37371 islpln5 37528 islvol5 37572 cdlemefrs29bpre0 38389 cdlemg17h 38661 cdlemg33b 38700 brnonrel 41150 frege92 41516 e2ebind 42136 stoweidlem28 43523 |
Copyright terms: Public domain | W3C validator |