| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr3di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbco3 2512 necon2bbid 2969 notzfaus 5321 fressnfv 7135 eluniima 7227 dfac2b 10091 alephval2 10532 adderpqlem 10914 1idpr 10989 leloe 11267 negeq0 11483 addeq0 11608 muleqadd 11829 addltmul 12425 xrleloe 13111 fzrev 13555 mod0 13845 modirr 13914 cjne0 15136 lenegsq 15294 fsumsplit 15714 sumsplit 15741 dvdsabseq 16290 xpsfrnel 17532 isacs2 17621 acsfn 17627 comfeq 17674 sgrp2nmndlem3 18859 resscntz 19272 gexdvds 19521 hauscmplem 23300 hausdiag 23539 utop3cls 24146 affineequivne 26744 eqscut2 27725 zs12ge0 28349 ltgov 28531 ax5seglem4 28866 mdsl2i 32258 rspc2daf 32402 cycpmco2 33097 cntrval2 33135 pl1cn 33952 fineqvpow 35093 satefvfmla1 35419 bj-isrvec 37289 topdifinfeq 37345 finxpreclem6 37391 wl-sb8ft 37545 ftc1anclem5 37698 fdc1 37747 relcnveq 38317 relcnveq2 38318 elrelscnveq 38490 elrelscnveq2 38491 lcvexchlem1 39034 lkreqN 39170 glbconxN 39379 islpln5 39536 islvol5 39580 cdlemefrs29bpre0 40397 cdlemg17h 40669 cdlemg33b 40708 tfsconcat0i 43341 tfsconcat0b 43342 oadif1lem 43375 oadif1 43376 brnonrel 43585 frege92 43951 e2ebind 44560 stoweidlem28 46033 clnbupgrel 47839 0funcg2 49077 |
| Copyright terms: Public domain | W3C validator |