![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb9v | Structured version Visualization version GIF version |
Description: Commutation of quantification and substitution variables based on fewer axioms than sb9 2513. (Contributed by Wolf Lammen, 27-Apr-2025.) |
Ref | Expression |
---|---|
wl-sb9v | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2148 | . 2 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sb6 2080 | . . . 4 ⊢ ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → 𝜑)) | |
3 | equcom 2013 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
4 | 3 | imbi1i 348 | . . . . 5 ⊢ ((𝑦 = 𝑥 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
5 | 4 | albii 1813 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑥 → 𝜑) ↔ ∀𝑦(𝑥 = 𝑦 → 𝜑)) |
6 | 2, 5 | bitri 274 | . . 3 ⊢ ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑥 = 𝑦 → 𝜑)) |
7 | 6 | albii 1813 | . 2 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑)) |
8 | sb6 2080 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
9 | 8 | albii 1813 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
10 | 1, 7, 9 | 3bitr4i 302 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-11 2146 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 |
This theorem is referenced by: wl-sb8ft 37050 |
Copyright terms: Public domain | W3C validator |