Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb9v Structured version   Visualization version   GIF version

Theorem wl-sb9v 37505
Description: Commutation of quantification and substitution variables based on fewer axioms than sb9 2527. (Contributed by Wolf Lammen, 27-Apr-2025.)
Assertion
Ref Expression
wl-sb9v (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb9v
StepHypRef Expression
1 alcom 2160 . 2 (∀𝑥𝑦(𝑥 = 𝑦𝜑) ↔ ∀𝑦𝑥(𝑥 = 𝑦𝜑))
2 sb6 2085 . . . 4 ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑥𝜑))
3 equcom 2017 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
43imbi1i 349 . . . . 5 ((𝑦 = 𝑥𝜑) ↔ (𝑥 = 𝑦𝜑))
54albii 1817 . . . 4 (∀𝑦(𝑦 = 𝑥𝜑) ↔ ∀𝑦(𝑥 = 𝑦𝜑))
62, 5bitri 275 . . 3 ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑥 = 𝑦𝜑))
76albii 1817 . 2 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑥 = 𝑦𝜑))
8 sb6 2085 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
98albii 1817 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥(𝑥 = 𝑦𝜑))
101, 7, 93bitr4i 303 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  wl-sb8ft  37506
  Copyright terms: Public domain W3C validator