Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8eft Structured version   Visualization version   GIF version

Theorem wl-sb8eft 37051
Description: Substitution of variable in existentialal quantifier. Closed form of sb8ef 2346. (Contributed by Wolf Lammen, 27-Apr-2025.)
Assertion
Ref Expression
wl-sb8eft (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb8eft
StepHypRef Expression
1 nfnt 1851 . . . . 5 (Ⅎ𝑦𝜑 → Ⅎ𝑦 ¬ 𝜑)
21alimi 1805 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑥𝑦 ¬ 𝜑)
3 wl-sb8ft 37050 . . . 4 (∀𝑥𝑦 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑))
42, 3syl 17 . . 3 (∀𝑥𝑦𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑))
5 alnex 1775 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
6 sbn 2269 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
76albii 1813 . . . 4 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
8 alnex 1775 . . . 4 (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)
97, 8bitri 274 . . 3 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)
104, 5, 93bitr3g 312 . 2 (∀𝑥𝑦𝜑 → (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑))
1110con4bid 316 1 (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531  wex 1773  wnf 1777  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  wl-mo3t  37076  wl-sb8motv  37081
  Copyright terms: Public domain W3C validator