| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb8eft | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in existentialal quantifier. Closed form of sb8ef 2356. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| wl-sb8eft | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnt 1855 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑦 ¬ 𝜑) | |
| 2 | 1 | alimi 1810 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥Ⅎ𝑦 ¬ 𝜑) |
| 3 | wl-sb8ft 37510 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) |
| 5 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | sbn 2279 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 7 | 6 | albii 1818 | . . . 4 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 8 | alnex 1780 | . . . 4 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 10 | 4, 5, 9 | 3bitr3g 313 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| 11 | 10 | con4bid 317 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: wl-mo3t 37536 wl-sb8motv 37541 |
| Copyright terms: Public domain | W3C validator |